Article
Keywords:
functional differential equation; functional nondifferential equation; asymptotic behaviour; transformation
Summary:
We discuss the asymptotic behaviour of all solutions of the functional differential equation \[y^{\prime }(x)=\sum _{i=1}^ma_i(x)y(\tau _i(x))+b(x)y(x)\,,\] where $b(x)<0$. The asymptotic bounds are given in terms of a solution of the functional nondifferential equation \[\sum _{i=1}^m|a_i(x)|\omega (\tau _i(x))+b(x)\omega (x)=0.\]
References:
[1] Čermák, J.:
On the asymptotic behaviour of solutions of certain functional differential equations. Math. Slovaca 48 (1998), 187–212.
MR 1647674
[2] Čermák, J.:
The asymptotic bounds of linear delay systems. J. Math. Anal. Appl. 225 (1998), 373–388.
MR 1644331
[3] Dibl¡k, J.:
Asymptotic equilibrium for a class of delay differential equations. Proc. of the Second International Conference on Difference Equations, S. Elaydi, I. Győri, G. Ladas (eds.), 1995, pp. 137–143.
MR 1636319
[4] Hale, J. K., Verduyn Lunel, S. M.:
Introduction to Functional Differential Equations, Springer-Verlag. New York, 1993.
MR 1243878
[5] Heard, M. L.:
A change of variables for functional differential equations. J. Differential Equations 18 (1975), 1–10.
MR 0387766 |
Zbl 0318.34069
[6] Kato, T., Mcleod, J. B.:
The functional differential equation $y^{\prime }(x)=ay(\lambda x)+by(x)$. Bull. Amer. Math. Soc. 77 (1971), 891–397.
MR 0283338
[7] Kuczma, M., Choczewski, B., Ger, R.:
Iterative Functional Equations, Encyclopedia of Mathematics and its Applications. Cambridge University Press, 1990.
MR 1067720
[8] Neuman, F.:
Simultaneous solutions of a system of Abel equations and differential equations with several deviations. Czechoslovak Math. J. 32 (107) (1982), 488–494.
MR 0669790 |
Zbl 0524.34070
[9] Neuman, F.:
Transformations and canonical forms of functional-differential equations. Proc. Roy. Soc. Edinburgh 115A (1990), 349–357.
MR 1069527