
Archivum Mathematicum

Anton Dekrét
On (1, 1)-tensor fields on symplectic manifolds

Archivum Mathematicum, Vol. 35 (1999), No. 4, 329--336

Persistent URL: http://dml.cz/dmlcz/107707

Terms of use:
© Masaryk University, 1999

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to
digitized documents strictly for personal use. Each copy of any part of this document must contain
these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital Mathematics
Library http://project.dml.cz

http://dml.cz/dmlcz/107707
http://project.dml.cz


ARCHIVUM MATHEMATICUM (BRNO)

Tomus 35 (1999), 329 – 336

ON (1,1)-TENSOR FIELDS ON SYMPLECTIC MANIFOLDS

Anton Dekrét

Two symplectic structures on a manifold M determine a (1,1)-tensor
field on M . In this paper we study some properties of this field. Conversely, if A is
(1,1)-tensor field on a symplectic manifold (M,ω) then using the natural lift theory
we find conditions under which ωA, ωA(X,Y ) = ω(AX, Y ), is symplectic.

INTRODUCTION

Let M be a manifold with two symplectic structures ω, ω. Then the vector
bundle morphisms Iω, Iω : TM → T ∗M, Iω(X) = iXω, Iω(X) = iXω determine a
(1,1)-tensor field A = I1

ω · Iω . In Proposition 1 we conclude some properties of A
from the point of view of both symplectic structures.

Let A be a (1,1)-tensor field and ω be a symplectic structure on M . Using
natural lifts on TM and T ∗M we find conditions under which the (0,2)-tensor
field ωA, ωA(X,Y ) = ω(AX, Y ), is symplectic in both cases when ω is closed only
(Proposition 2) and when ω is exact (Proposition 3). Proposition 4 deals with the
same problem in the case when ω = ddvL is the basic symplectic structure on TM
of a Lagrangian L on TM .

Finally we show (Proposition 5) that if C∗A is the complete lift of A on T ∗M, ε
is the Liouville 1-form on T ∗M,ω = dε, a = ε ·C∗A, then ωC∗A = da.

All manifolds and maps in this paper are assumed to be infinitely differentiable.

Two symplectic structures on a manifold M

Let A be a (1,1)-tensor field on a manifold M . Denote by A : TM → TM and
by A∗ : T ∗M → T ∗M the corresponding vector bundle isomorphisms over IdM .
Let ω be a (0,2)-tensor field on M . We will use the following notations:

Iω : TM → T ∗M, Iω(X) = iXω = ω(X,−)

ωA : M →⊗2T ∗M, ωA(X,Y ) = ω(AX, Y ),

ωA : M →⊗2T ∗M, ωA(X,Y ) = ω(X,AY ).
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Evidently Iω · A : TM → T ∗M, IωA(X) = iAXω, [IωA(X)](Y ) = ω(AX, Y ) =
ωA(X,Y ).

If ω is symmetric or skew-symmetric, then ωA(X,Y ) = (ωA)t(X,Y ) or
ωA(X,Y ) = −(ωA)t(X,Y ), respectively, where (ωA)t is transposed to ωA. There-
fore, if ω is a 2-form, then ωA is symmetric or skew-symmetric if and only if
ωA = −ωA or ωA = ωA respectively.

Definition 1. We will say that a (1,1)-tensor field A on M is ω-symmetric if
IωA = A∗Iω.

Lemma 1. Let ω be a 2-form on M . Then a (1,1)-tensor field A is ω-symmetric
if and only if ωA is skew-symmetric.

Proof. We have the equalities:

IωA(X)(Y ) = ωA(X,Y ),

[A∗Iω(X)](Y ) = Iω(X)(AY ) = ω(X,AY ) = ωA(X,Y ) .

Then IωA = A∗Iω iff ωA = ωA, i.e. iff ωA is skew-symmetric. �

Lemma 2. If both (0,2)-tensor fields ω and ωA are 2-forms, then iAω = 2ωA.

Proof. Recall that iAω(X,Y ) = ω(AX, Y )+ω(X,AY ). By our assumption ωA =
ωA. It completes our proof. �

Definition 2. Let ω, ω be (0,2)-tensor fields on M . We will say that ω is A-related
with ω if Iω = Iω ·A, i.e. if ω = ωA.

Let a (0,2)-tensor field be regular. Then A := I−1
ω · Iω is a (1,1)-tensor field on

M and ω is A-related with ω.

Lemma 3. If two (0,2)-tensor fields ω, ω are symmetric or skew-symmetric and
ω is regular, then (I−1

ω · Iω)∗ = Iω · I−1
ω .

The proof is evident when using the coordinate expressions.

Corollary of Lemma 1. If ω and ω are 2-forms and ω is regular then A = I−1
ω ·Iω

is ω-symmetric.

Let both forms ω and ω be symplectic. Then A = I−1
ω · Iω is regular, ωA =

ωA = ω, Iω = IωA = A∗Iω, A
∗ = Iω ·I−1

ω . As 0 = ωA(X,X) = ω(AX,X) therefore
the vector fields X and AX are ω-orthogonal for every vector field X on M .

Let (α, β)ω denote the Poisson bracket of 1-forms α and β in the symplectic
manifold (M,ω). Recall that if we denote Iω(Xγ) = γ then two forms α, β are in
ω-involution if ω(Xα, Xβ) = 0. Further, it is said that a vector field X is a local
ω-Hamiltonian or an ω-Hamiltonian if Iω(X) is closed or exact, respectively, see
[4].
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Proposition 1. Let ω and ω be symplectic 2-forms on M . Let A = I−1
ω · Iω.

Then

a) 1-forms Iω (X), Iω(Y ) are in ω-involution if and only if the 1-forms
A∗Iω(X), Iω(Y ) are in ω-involution.

b) The forms Iω(X) and A∗Iω(X) are in ω-involution.
c) A vector field X is a local ω-Hamiltonian if and only if AX is a local

ω-Hamiltonian.
d) We have the identities

Iω(A[X,Y ]) = A∗(IωX, Iω(Y ))ω = (Iω(X), Iω(Y ))ω .

Proof.

a) ω(X,Y ) = ωA(X,Y ) = ω(AX, Y ). Then the equalityA∗Iω(X) = Iω(AX)
yields the proof.

b) The proof is evident from ω(AX,X) = 0.
c) The assertion is the consequence of the identity Iω(X) = Iω(AX).
d) By the definition of the Poisson bracket we get

(Iω(X), Iω(Y ))ω = Iω[X,Y ] = A∗Iω([X,Y ]) = A∗(IωX, IωY ),

IωA([X,Y ]) = A∗Iω([X,Y ]) = A∗(Iω(X), Iω(Y )) . �
Remark. Denote by Hω or Hω the Lie algebras of all local ω- or ω-Hamiltonians,
respectively. By Proposition 1, X ∈ Hω if and only if AX ∈ Hω. It is clear that
A|Hω : Hω → Hω is an isomorphism of linear spaces which is not the Lie algebras
isomorphism in general.

(1,1)-tensor fields on symplectic manifolds

We will deal with a question: Let (M,ω) be a symplectic manifold and A be
a (1,1)-tensor field on M . Under what conditions the (0,2)-tensor field ωA is
symplectic?

First of all we recall some lifts of geometrical fields on M to the tangent bundle
pM : TM →M , see [2], [3], [5].

Let (xi) be a local chart on M . It induces the chart (xi, xi1) on TM . If f or F
is a function on M or on TM then we will use the following shortened notations

fi :=
∂f

∂xi
, Fi :=

∂F

∂xi
, Fi1 :=

∂F

∂xi1
.

The complete lift of a function f : M → R is a function Cf : TM → R such
that Cf(X) = Xf, X ∈ TM , or equivalently Cf = S(p∗Mf), where S is an
arbitrary semispray (a second order differential equation) on TM and p∗Mf is the
pM -pullback of f . In coordinates: Cf = fix

i
1.

The complete lift of a vector field X on M is the vector field CX on TM the flow
of which is the tangent prolongation of the flow of X, CX = ξi∂/∂xi+ξikx

k
1∂/∂x

i
1,

where X = ξi∂/∂xi.
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The complete lift of a p-form ε on M is the p-form Cε on TM which satisfies
the equality

(1) Cε(CX1, . . . , CXp) = C(ε(X1, . . . , Xp))

for any vector fields X1, . . . , Xp on M .
In coordinates, if ε = 1

p!εi1...ipdx
i1 ∧ · · · ∧ dxip , then

(2) Cε =
1
p!
εi1...ip,kx

k
1dx

i1 ∧ · · · ∧ dxip +
1

(p− 1)!
εi1...ipdx

i1
1 ∧ dxi2 ∧ · · · ∧ dxip .

The CT -lift of a p-form ε on M is the p−form CT ε on TM defined by

CTε = diS(p∗Mω) ,

where S is again a semispray on TM and p∗Mω is the pull-back of ω. Equivalently,
this form can be constructed by the following procedure: Let X ∈ TM . Then the
map εT : X → iXε is a (p− 1)-form on TM such that

CT ε = dεT .

In coordinates,

(3) CT ε =
1

(p − 1)!
(εi1...ip−1k,ipx

k
1dx

i1∧· · ·∧dxip+εi1...ipdx
i1
1 ∧dxi2∧· · ·∧dxip) .

Finally we recall that the complete lift of a tensor (1,1)-field A on M is a tensor
field CA on TM such that CA(CX) = C(AX) for every vector field X on M . In
coordinates, if A = aijdx

j ⊗ ∂/∂xi, then

CA = aijdx
j ⊗ ∂/∂xi + (aijkx

k
1dx

j + aijdx
j
1)⊗ ∂/∂xi1 .

There are well known the following properties of complete lifts, see [2], [3].

Lemma 4. Let ε be a p-form and A be a (1,1)-tensor field on M . Then

a) dCε = Cdε
aa) C(A ⊗S ε) = CA⊗S Cε,

where ⊗S denotes a contraction of tensor products.

Corollaries.

1. If ε is closed, then Cε is also closed.
2. A 2-form ω is A-related with ω if and only if Cω is CA-related with Cω.
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Lemma 5. Let ω be p-form on M and let Cω or CTω be its complete or CT -lifts,
respectively. Then ω is closed if and only if Cω = CTω.

Proof in coordinates. If ω = 1
p!ωi1...ipdx

i1∧· · ·∧dxip then dω = 1
p!ωi1...ip,kdx

k∧
dxi1 ∧ · · · ∧ dxip and so ω is closed iff

(4) ωi1...ip,k − ωi1...ip−1k,ip + ωi1...ip−2ipk,ip−1 + · · ·+ (−1)pωi2...ipk,i1 = 0 .

By (2) and (3) we get that Cω = CTω if and only if

(5)
1
p!
ωi1...ip,kx

k
1dx

i1 ∧ · · · ∧ dxip =
1

(p − 1)!
ωi1...ip−1k,ipx

k
1dx

i1 ∧ · · · ∧ dxip .

For arbitrary vector fields X1, . . . , Xp on TM we get for the left side L or for
the right side R of the equality (5), respectively:

L =ωi1...ip,kx
k
1ξ
i1
1 . . . ξipp

R =
1

(p − 1)!
ωi1...ip−1k,ipx

k
1[(p− 1)!ξi11 . . . ξipp − (p− 1)!ξi11 . . . ξ

ip−2
p−2 ξ

ip−1
p ξ

ip
p−1

+ (p− 1)!ξi11 . . . ξ
ip−3

p−3 ξ
ip−2

p−1 ξ
ip−1
p ξ

ip
p−2 + · · ·+ (−1)p−1(p− 1)!ξi12 ξ

i2
3 . . . ξip−1

p ξ
ip
1 ]

=ωi1...ip−1k,ipx
k
1ξ
i1
1 . . . ξipp − ωi1...ipk,ip−1x

k
1ξ
i1
1 . . . ξ

ip−2
p−2 ξ

ip
p ξ

ip−1
p−1

+ ωi1...ip−3ip−1ipk,ip−2ξ
i1
1 . . . ξ

ip−3

p−3 ξ
ip
p ξ

ip−1

p−1 ξ
ip−2

p−2 + · · ·+ (−1)p−1ωi2...ipk,i1ξ
i2
2 . . .

. . . ξipp ξ
i1
1 = (ωi1...ip−1k,ip − ωi1...ip−2ipk,ip−1 + ωi1...ip−3ip−1ipk,ip−2 + . . .

+ (−1)p−1ωi2...ipk,i1)ξi11 . . . ξipp .

So L = R if and only if

ωi1...ip,k = ωi1...ip−1k,ip − ωi1...ip−2ipkip−1 + ωi1...ip−3ip−1ipk,ip−2 + . . .

+ (−1)p−1ωi2...ipk,i1 .

Comparing it with (4) we complete our proof. �

Now we get

Proposition 2. Let ω be a symplectic 2-form. Let ωA be skew-symmetric. Then
ωA is symplectic if and only if A is regular and CωA = CTω

A.

Proof. IωA is regular iff A is regular. Then Lemma 5 completes our proof. �

Remark. Let a 2-form ω is A-related to ω. Let X be a vector field on M . Then
A∗Iω(X) is closed if and only if CαX = CTαX , αX = Iω(X).
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(1,1)-tensor field on a manifold (M, ω) with an exact 2-form ω

Let ε = εidx
i be a 1-form on M and A be a given (1,1)-tensor field on M . Then

we have the forms:

ε = A∗ε = εta
t
idx

i, ω = dε = εijdx
j ∧ dxi ,

ω = d(A∗ε) = (εtjati + εta
t
ij)dx

j ∧ dxi,
Cε = εikx

k
1dx

i + εidx
i
1, CT ε = εtix

t
1dx

i + εidx
i
1 .

Let X = ξi∂/∂xi is a vector field on M . Then we get in coordinates:

Iω(AX) = (εit − εti)atjξjdxi ,
Iω(X) = (εtjati + εta

t
ij − εtiatj − εtatji)ξjdxi .

So the form ωA is skew-symmetric if and only if

(6) (εit − εti)atj = −(εjt − εtj)ati .

Proposition 3. The 2-form ω = d(A∗ε) is A-related to the 2-form ω = dε if and
only if ωA is skew-symmetric and the 2-form diCACT ε is semibasic.

Proof. As ω is a 2-form, then it is A-related to ω iff ωA is skew-symmetric and
Iω(AX) = Iω(X), i.e. iff the equalities (6) and

(7) εtja
t
i + εta

t
ij − εtatji = εita

t
j

are satisfied.
We get

CA∗CT ε =iCACTε = (εkux
k
1a
u
i + εta

t
ikx

k
1)dxi + εta

t
idx

i
1 ,

d(CA∗CT ε) =(εkujxk1a
u
i + εkux

k
1a
u
ij + εtja

t
ikx

k
1 + εta

t
ikjx

k
1)dxj ∧ dxi

+ (εtja
t
i − εitatj + εt(a

t
ij − atji))dxi ∧ dx

j
1 .

Comparing this with (7) we finish our proof. �

Remark on a Lagrangian L of first
order on M with a (1,1)-tensor field A

Let L : TM → R be a Lagrangian on M and v = dxi⊗ ∂/∂xi1 be the canonical
endomorphism (almost tangent structure). Then ε = dvL = Li1dx

i, ω = dε =
Li1jdx

j ∧ dxi + Li1j1dx
j
1 ∧ dxi are the Lagrange forms on TM which are the

fundamental objects of the Lagrange formalism of classical mechanics. If A is a
(1,1)-tensor field on M we put ε = iCAε = Lt1a

t
idx

i and ω = dε = (Lt1ja
t
i +

Lt1a
t
ij)dx

j ∧ dxi + Lt1j1a
t
idx

j
1 ∧ dxi. It is easy to prove the following assertion.

Proposition 4. The 2-form ω = d(iCAdvL) is CA-related to the Lagrange 2-
form ω = ddvL if and only if ωCA is skew-symmetric and the 2-form diCAdL is
semibasic.
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An example of the canonical 2-form ω which is A-related
to the Liouville 2-form on the cotangent bundle T∗M

Let (xi, zi) be the induced chart on the cotangent bundle πM : T ∗M → M .
Then ε = zidx

i is the Liouville 1-form on T ∗M and ω = dε = dzi ∧ dxi is the
canonical symplectic form. A tensor field A = aijdx

j ⊗ ∂/∂xi on M determines
some geometrical objects on T ∗M which are closely connected with the natural
lifts of A to T ∗M . We recall some of them, ([1], [5]):

1. Let A∗ : T ∗M → T ∗M be the dual vector bundle morphism to A : TM →
TM . Then a = ajizjdx

i : T ∗M → T ∗T ∗M is a 1-form on T ∗M such that a(z,X) =
A∗z(TπMX) for every X ∈ TzT ∗M . Put

ω = da = akijzkdx
j ∧ dxi + ajidzj ∧ dxi .

This immediately gives

Lemma 6. The 2-form da is symplectic if and only if the (1,1)-tensor field A is
regular.

2. The complete lift C∗A of A to T ∗M is a (1,1)-tensor field on T∗M such that

(8) da(Y,X) =< iY dε, C∗A(X) > ,

where the symbol < > means the evaluation mapping.
In coordinates

C∗A = aijdx
j ⊗ ∂/∂xi + [(akji − akij)zkdxj + ajidzj ]⊗ ∂/∂zi .

It is evident that a = iC∗Aε.

Proposition 5. The 2-form ω = da is C∗A-related to the 2-form dε.

Proof. As < iY dε, C∗A(X) >= dε(Y,C∗A(X)) = −dε(C∗A(X), Y ) therefore the
equality (8) can be rewritten in the form iXda = iC∗AXdε. It means that da is
C∗A-related with dε, i.e. da = (dε)C∗A. �
Corollary. As da is a 2-form therefore dεC∗A is skew-symmetric and therefore
C∗A is dε-symmetric, i.e. Idε(C∗A) = (C∗A)∗Idε.

Let α = αidx
i, α : M → T ∗M , be a 1-form on M . Then αv = π∗Mα = αidx

i

is the socalled vertical lift and Xv
α = αi∂/∂x

i is the vertical vector field on T∗M ,
induced by the section α and by the identification V T∗M = T∗M ×M T ∗M . Since
Idε(Xv

α) = αv therefore Xv
α is a Hamiltonian of the symplectic manifold (T ∗M,dε)

iff α is closed. It implies that the 1-form A∗α is closed iff the vertical field Xv
A∗α

is a dε-Hamiltonian.
Recall that the complete lift C∗X = ξi∂/∂xi − ξki zk∂/∂zi of a vector field X =

ξi∂/∂xi on M to the cotangent bundle is a dε-Hamiltonian and Idε(C∗X) = −dfX ,
where fX(z) =< z,X >= ziξ

i is a function on T ∗M determined by X. If A is
regular, then AX is a vector field on M and Idε(C∗AX) = −dfAX . We have

C∗A(C∗X) = aitξ
t∂/∂xi + [(akit − akti)zkξt − a

j
i ξ
k
j zk]∂/∂zi ,

C∗(AX) = aitξ
t∂/∂xi − (aktiξ

t + akt ξ
t
i )zk∂/∂zi .
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Proposition 6. Let A be a regular (1,1)-tensor field. Then the vector fields
C∗(AX) and C∗A(C∗X) are equal if and only if the 1-forms dfAX and iC∗AdfX
are also equal.

Proof. The field C∗A is dε-symmetric, therefore Idε(C∗A(C∗X)) = (C∗A)∗

Idε(C∗X) = −(C∗A)∗(dfX). Then the equality Idε(C∗A(C∗X) − C∗(AX)) =
−(C∗A)∗(dfX) + dfAX completes our proof. �
Corollary. The vector field C∗A(C∗X) is a dε-Hamiltonian iff iC∗AdfX = dfAX .
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