Previous |  Up |  Next

Article

References:
[1] Čermák L.: A note on a discrete form of Friedrichs’ inequality. Aplikace matematiky 28 (1983), 457–466. MR 0723204 | Zbl 0537.65073
[2] Feistauer M., Ženíšek A.: Finite solution of nonlinear elliptic problems. Numerische Mathematik 50 (1987), 451–475. MR 0875168
[3] Knobloch P.: Discrete Friedrichs’ and Korn’s inequalities in two and three dimensions. (preprint). Zbl 0854.65098
[4] Kufner A., John O., Fučík S.: Function Spaces. Academia, Prague 1977. MR 0482102
[5] Ljusternik L. A., Sobolew W. I.: Elemente der Funktionalanalysis. Akademie-Verlag, Berlin 1960. Zbl 0090.32302
[6] Nečas J.: Les méthodes directes en théorie des équations elliptiques. Academia, Prague 1967. MR 0227584
[7] Škabrahová D.: Linear scheme for finite element solution of nonlinear parabolic-elliptic problems with nonhomogeneous Dirichlet boundary condition. (preprint). Zbl 1066.65117
[8] Ženíšek A.: Discrete forms of Friedrichs’ inequalities in the finite element method. RAIRO Numerical Analysis 15 (1981), 265–286. MR 0631681 | Zbl 0475.65072
[9] Ženíšek A.: Finite element variational crimes in parabolic-elliptic problems. Numerische Mathematik 55 (1989), 343–376. MR 0993476
[10] Ženíšek A.: Nonlinear elliptic and evolution problems and their finite element approximations. Academic Press, London 1990. MR 1086876
[11] Zlámal M.: Finite element solution of quasistationary nonlinear magnetic field. RAIRO Numerical Analysis 16 (1982), 161–191. MR 0661454
[12] Zlámal M.: Addendum to the paper “Finite element solution of quasistationary nonlinear magnetic field”. RAIRO Numerical Analysis 17 (1983), 407–415. MR 0713768
[13] Zlámal M.: A linear scheme for the numerical solution of nonlinear quasistationary magnetic fields. Mathematics of Computation 41 (1983), 425–440. MR 0717694
Partner of
EuDML logo