[1] Čermák L.:
A note on a discrete form of Friedrichs’ inequality. Aplikace matematiky 28 (1983), 457–466.
MR 0723204 |
Zbl 0537.65073
[2] Feistauer M., Ženíšek A.:
Finite solution of nonlinear elliptic problems. Numerische Mathematik 50 (1987), 451–475.
MR 0875168
[3] Knobloch P.:
Discrete Friedrichs’ and Korn’s inequalities in two and three dimensions. (preprint).
Zbl 0854.65098
[4] Kufner A., John O., Fučík S.:
Function Spaces. Academia, Prague 1977.
MR 0482102
[5] Ljusternik L. A., Sobolew W. I.:
Elemente der Funktionalanalysis. Akademie-Verlag, Berlin 1960.
Zbl 0090.32302
[6] Nečas J.:
Les méthodes directes en théorie des équations elliptiques. Academia, Prague 1967.
MR 0227584
[7] Škabrahová D.:
Linear scheme for finite element solution of nonlinear parabolic-elliptic problems with nonhomogeneous Dirichlet boundary condition. (preprint).
Zbl 1066.65117
[8] Ženíšek A.:
Discrete forms of Friedrichs’ inequalities in the finite element method. RAIRO Numerical Analysis 15 (1981), 265–286.
MR 0631681 |
Zbl 0475.65072
[9] Ženíšek A.:
Finite element variational crimes in parabolic-elliptic problems. Numerische Mathematik 55 (1989), 343–376.
MR 0993476
[10] Ženíšek A.:
Nonlinear elliptic and evolution problems and their finite element approximations. Academic Press, London 1990.
MR 1086876
[11] Zlámal M.:
Finite element solution of quasistationary nonlinear magnetic field. RAIRO Numerical Analysis 16 (1982), 161–191.
MR 0661454
[12] Zlámal M.:
Addendum to the paper “Finite element solution of quasistationary nonlinear magnetic field”. RAIRO Numerical Analysis 17 (1983), 407–415.
MR 0713768
[13] Zlámal M.:
A linear scheme for the numerical solution of nonlinear quasistationary magnetic fields. Mathematics of Computation 41 (1983), 425–440.
MR 0717694