Previous |  Up |  Next

Article

Keywords:
Quadratic functional; Hamiltonian system; Riccati equation; oscillation; observability; Rayleigh’s principle; eigenvalue problem; linear control system
Summary:
In this paper we give a survey on the theory of quadratic functionals. Particularly the relationships between positive definiteness and the asymptotic behaviour of Riccati matrix differential equations, and between the oscillation properties of linear Hamiltonian systems and Rayleigh’s principle are demonstrated. Moreover, the main tools form control theory (as e.g. characterization of strong observability), from the calculus of variations (as e.g. field theory and Picone’s identity), and from matrix analysis (as e.g. l’Hospital’s rule for matrices) are discussed.
References:
[1] C. D. Ahlbrandt: Equivalence of discrete Euler equations and discrete Hamiltonian systems. J. Math. Anal. Appl., 180 (1993), 498–517. MR 1251872 | Zbl 0802.39005
[2] C. D. Ahlbrandt S. L. Clark J. W. Hooker W. T. Patula: A discrete interpretation of Reid’s roundabout theorem for generalized differential systems. In: Computers and Mathematics with Applications, Comput. Math. Appl., 28 (1994), 11–21. MR 1284216
[3] H. W. Alt: Lineare Funktionalanalysis. Springer Verlag, Berlin, 1985. Zbl 0577.46001
[4] M. Bohner: Linear Hamiltonian difference systems: Disconjugacy and Jacobi-type conditions. J. Math. Anal. Appl., 199 (1996), 804–826. MR 1386607
[5] Z. Došlá O. Došlý: Quadratic functionals with general boundary conditions. Appl. Math. Optim., 36 (1997), 243–262. MR 1457870
[6] J. Klamka: Controllability of dynamical systems. Kluwer, Dordrecht, 1991. MR 1134783 | Zbl 0732.93008
[7] W. Kratz: A substitute of l’Hospital’s rule for matrices. Proc. Amer. Math. Soc., 99 (1987), 395–402. MR 0875370 | Zbl 0629.15014
[8] W. Kratz: A limit theorem for monotone matrix functions. Linear Algebra Appl., 194 (1993), 205–222. MR 1243829
[9] W. Kratz: The asymptotic behaviour of Riccati matrix differential equations. Asymptotic Anal., 7 (1993), 67–80. MR 1216453 | Zbl 0774.34034
[10] W. Kratz: On the optimal linear regulator. Intern. J. Control, 60 (1994), 1005–1013. MR 1301896 | Zbl 0836.49017
[11] W. Kratz: An index theorem for monotone matrix-valued functions. SIAM J. Matrix Anal. Appl., 16 (1995), 113–122. MR 1311421 | Zbl 0820.47012
[12] W. Kratz: Characterization of strong observability and construction of an observer. Linear Algebra Appl., 221 (1995), 31–40. MR 1331787 | Zbl 0821.93017
[13] W. Kratz: Quadratic functionals in variational analysis and control theory. Akademie Verlag, Berlin, 1995. MR 1334092 | Zbl 0842.49001
[14] W. Kratz D. Liebscher: A local characterization of observability. Linear Algebra Appl., (1998), to appear. MR 1483524
[15] W. Kratz D. Liebscher R. Schätzle: On the definiteness of quadratic functionals. Ann. Mat. Pura Appl. (4), (1998), to appear. MR 1746539
[16] M. Morse: Variational analysis: Critical extremals and Sturmian theory. Wiley, New York, 1973.
[17] M. Picone: Sulle autosoluzioni e sulle formule di maggiorazione per gli integrali delle equazioni differenziali lineari ordinarie autoaggiunte. Math. Z., 28 (1928), 519–555. MR 1544975
[18] W. T. Reid: Ordinary differential equations. Wiley, New York, 1971. MR 0273082 | Zbl 0212.10901
[19] W. T. Reid: Riccati differential equations. Academic Press, London, 1972. MR 0357936 | Zbl 0254.34003
[20] J. Simon: Compact sets in the space $L^p(0,t;B)$. Annali di Matematica Pura ed Applicata, 146 (1987), 65–96. MR 0916688
[21] S. A. Swanson: Picone’s identity. Rend. Math., 8 (1975), 373–397. MR 0402188 | Zbl 0327.34028
Partner of
EuDML logo