[1] S. Albeverio V. Bogachev M. Röckner: On uniqueness of invariant measures for finite and infinite dimensional diffusions. Universität Bielefeld, SFB 343, Preprint 97–057
[2] S. Albeverio, Yu. G. Kondratiev M. Röckner:
Ergodicity of $L^2$-semigroups and extremality of Gibbs states. J. Funct. Anal. 144 (1997), 394–423
MR 1432591
[3] S. Albeverio, Yu. G. Kondratiev M. Röckner:
Ergodicity for the stochastic dynamics of quasi-invariant measures with applications to Gibbs states. J. Funct. Anal. 149 (1997), 415–469
MR 1472365
[4] A. Bensoussan A. Răşcanu:
Large time behaviour for parabolic stochastic variational inequalities. An. Ştiinţ. Univ. Al. I. Cuza Iaşi Secţ. I a Mat. 42 (1996), 149–173
MR 1608249
[5] V. I. Bogachev N. Krylov M. Röckner:
Regularity of invariant measures: the case of non-constant diffusion part. J. Funct. Anal. 138 (1996), 223–242
MR 1391637
[6] V. I. Bogachev M. Röckner:
Regularity of invariant measures in finite and infinite dimensional spaces and applications. J. Funct. Anal. 133 (1995), 168–223
MR 1351647
[7] V. Bogachev M. Röckner T. S. Zhang: Existence and uniqueness of invariant measures: an approach via sectorial forms. Universität Bielefeld, SFB 343, Preprint 97–072
[8] A. Chojnowska-Michalik B. Goldys:
Existence, uniqueness and invariant measures for stochastic semilinear equations in Hilbert spaces. Probab. Theory Related Fields 102 (1995), 331-356
MR 1339737
[9] I. D. Chueshov T. V. Girya:
Inertial manifolds and forms for semilinear parabolic equations subjected to additive noise. Lett. Math. Phys. 34 (1995), 69–76
MR 1334036
[10] G. Da Prato A. Debussche:
Stochastic Cahn-Hilliard equation. Nonlinear Anal. 26 (1996), 241–263
MR 1359472
[11] G. Da Prato K. D. Elworthy J. Zabczyk:
Strong Feller property for stochastic semilinear equations. Stochastic Anal. Appl. 13 (1995), 35–45
MR 1313205
[12] G. Da Prato D. Gątarek:
Stochastic Burgers equation with correlated noise. Stochastics Stochastics Rep. 52 (1995), 29–41
MR 1380259
[13] G. Da Prato D. Gątarek J. Zabczyk:
Invariant measures for semilinear stochastic equations. Stochastic Anal. Appl. 10 (1992), 387–408
MR 1178482
[14] G. Da Prato D. Nualart J. Zabczyk: Strong Feller property for infinite-dimensional stochastic equations. Scuola Normale Superiore Pisa, Preprints di Matematica n. 33/1994
[15] G. Da Prato J. Zabczyk:
Smoothing properties of transition semigroups in Hilbert spaces. Stochastics Stochastics Rep. 35 (1991), 63–77
MR 1110991
[16] G. Da Prato J. Zabczyk:
Non-explosion, boundedness and ergodicity for stochastic semilinear equations. J. Differential Equations 98 (1992), 181–195
MR 1168978
[17] G. Da Prato J. Zabczyk:
On invariant measure for semilinear equations with dissipative nonlinearities. Stochastic partial differential equations and their applications (Charlotte, 1991), 38–42, Lecture Notes in Control Inform. Sci. 176, Springer 1992
MR 1176769
[18] G. Da Prato J. Zabczyk:
Stochastic equations in infinite dimensions. Cambridge University Press, Cambridge 1992
MR 1207136
[19] G. Da Prato J. Zabczyk:
Convergence to equilibrium for classical and quantum spin systems. Probab. Theory Related Fields 103 (1995), 529–552
MR 1360204
[20] G. Da Prato J. Zabczyk:
Ergodicity for infinite dimensional systems. Cambridge University Press, Cambridge 1996
MR 1417491
[21] J. L. Doob:
Asymptotic properties of Markoff transition probabilities. Trans. Amer. Math. Soc. 63 (1948), 393–421
MR 0025097 |
Zbl 0041.45406
[22] M. Duflo D. Revuz:
Propriétés asymptotiques de probabilités de transition des processus de Markov récurrents. Ann. Inst. H. Poincaré Probab. Statist. 5 (1969), 233–244
MR 0273680
[23] B. Ferrario:
Ergodic results for stochastic Navier-Stokes equation. Stochastics Stochastics Rep. 60 (1997), 271–288
MR 1467721 |
Zbl 0882.60059
[24] F. Flandoli B. Maslowski:
Ergodicity of the 2–D Navier-Stokes equation under random perturbations. Comm. Math. Phys. 171 (1995), 119–141
MR 1346374
[25] M. I. Freidlin:
Random perturbations of reaction-diffusion equations: the quasi-deterministic approximation. Trans. Amer. Math. Soc. 305 (1988), 665–697
MR 0924775 |
Zbl 0673.35049
[26] M. Fuhrman:
Smoothing properties of nonlinear stochastic equations in Hilbert spaces. NODEA Nonlinear Differential Equations Appl. 3 (1996), 445–464
MR 1418590 |
Zbl 0866.60050
[27] D. Gątarek B. Gołdys:
Existence, uniqueness and ergodicity for the stochastic quantization equation. Studia Math. 119 (1996), 179–193
MR 1391475
[28] D. Gątarek B. Goldys:
On invariant measures for diffusions on Banach spaces. Potential Anal. 7 (1997), 539–553
MR 1467205
[29] T. V. Girya:
On stabilization of solutions to nonlinear stochastic parabolic equations. Ukrain. Mat. Zh. 41 (1989), 1630–1636 (in Russian)
MR 1042959
[30] T. V. Girya I. D. Khueshov:
Inertial manifolds and stationary measures for dissipative dynamical systems with a random perturbation. Mat. Sb. 186 (1995), 29–46 (in Russian)
MR 1641664
[31] Hu Xuanda:
Boundedness and invariant measures of semilinear stochastic evolution equations. Nanjing Daxue Xuebao Shuxue Bannian Kan 4 (1987), 1–14
MR 0916950 |
Zbl 0652.60065
[32] A. Ichikawa:
Semilinear stochastic evolution equations: Boundedness, stability and invariant measures. Stochastics 12 (1984), 1–39
MR 0738933 |
Zbl 0538.60068
[33] Ya. Sh. Il’yasov A. I. Komech:
The Girsanov theorem and ergodic properties of statistical solutions to nonlinear parabolic equations. Trudy Sem. Petrovskogo 12 (1987), 88–117 (in Russian)
MR 0933054
[34] S. Jacquot:
Strong ergodicity results on Wiener space. Stochastics Stochastics Rep. 51 (1994), 133–154
MR 1380766 |
Zbl 0851.60059
[35] S. Jacquot:
Simulated annealing for stochastic semilinear equations in Hilbert spaces. Stochastic Process. Appl. 64 (1996), 73–91
MR 1419493
[36] S. Jacquot G. Royer:
Ergodicité d’une classe d’équations aux dérivées partielles stochastiques. C. R. Acad. Sci. Paris Sér. Math. 320 (1995), 231–236
MR 1320362
[37] R. Z. Khas’minskiĭ:
Ergodic properties of recurrent diffusion processes and stabilization of solutions to the Cauchy problem for parabolic equations. Teor. Veroyatnost. i Primenen. 5 (1960), 196–214 (in Russian)
MR 0133871
[38] R. Z. Khas’minskiĭ: Stability of systems of differential equations under random perturbations of their parameters. Nauka, Moskva 1969 (in Russian); English translation: Stochastic stability of differential equations, Sijthoff & Noordhoff, Alphen aan den Rijn 1980
[39] Yu. G. Kondratiev S. Roelly H. Zessin:
Stochastic dynamics for an infinite system of random closed strings: A Gibbsian point of view. Stochastic Process. Appl. 61 (1996), 223–248
MR 1386174
[40] S. M. Kozlov:
Some problems concerning stochastic partial differential equations. Trudy Sem. Petrovskogo 4 (1978), 147–172 (in Russian)
MR 0524530
[42] G. Leha G. Ritter:
Lyapunov-type conditions for stationary distributions of diffusion processes on Hilbert spaces. Stochastics Stochastics Rep. 48 (1994), 195–225
MR 1782748
[43] G. Leha G. Ritter: Stationary distributions of diffusion processes with singular drift on Hilbert spaces. in preparation
[44] R. Manthey B. Maslowski:
Qualitative behaviour of solutions of stochastic reaction-diffusion equations. Stochastic Process. Appl. 43 (1992), 265–289
MR 1191151
[45] R. Marcus:
Parabolic Itô equations. Trans. Amer. Math. Soc. 198 (1974), 177–190
MR 0346909
[46] R. Marcus:
Parabolic Itô equations with monotone nonlinearities. J. Funct. Anal. 29 (1978), 275–286
MR 0512245 |
Zbl 0397.47034
[47] R. Marcus:
Stochastic diffusion on an unbounded domain. Pacific J. Math. 84 (1979), 143–153
MR 0559632 |
Zbl 0423.60056
[48] G. Maruyama H. Tanaka:
Ergodic property of $N$-dimensional recurrent Markov processes. Mem. Fac. Sci. Kyushu Univ. Ser. A 13 (1959), 157–172
MR 0112175
[49] B. Maslowski:
Uniqueness and stability of invariant measures for stochastic differential equations in Hilbert spaces. Stochastics Stochastics Rep. 28 (1989), 85–114
MR 1018545 |
Zbl 0683.60037
[50] B. Maslowski:
Strong Feller property for semilinear stochastic evolution equations and applications. Stochastic systems and optimization (Warsaw, 1988), 210–224, Lecture Notes in Control Inform. Sci. 136, Springer-Verlag, Berlin 1989
MR 1180781
[51] B. Maslowski:
On ergodic behaviour of solutions to systems of stochastic reaction-diffusion equations with correlated noise. Stochastic processes and related topics (Georgenthal, 1990), 93–102, Akademie-Verlag, Berlin 1991
MR 1127885
[52] B. Maslowski:
On probability distributions of solutions of semilinear stochastic evolution equations. Stochastics Stochastics Rep. 45 (1993), 17–44
MR 1277360 |
Zbl 0792.60058
[53] B. Maslowski:
Stability of semilinear equations with boundary and pointwise noise. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 22 (1995), 55–93
MR 1315350 |
Zbl 0830.60056
[54] B. Maslowski:
Asymptotic properties of stochastic equations with boundary and pointwise noise. Stochastic processes and related topics (Siegmundsburg, 1994), 67–76, Gordon and Breach, Amsterdam 1996
MR 1393497
[55] B. Maslowski J. Seidler:
Ergodic properties of recurrent solutions of stochastic evolution equations. Osaka J. Math. 31 (1994), 965–1003
MR 1315015
[56] B. Maslowski J. Seidler: Probabilistic approach to the strong Feller property. in preparation
[57] B. Maslowski I. Simão:
Asymptotic properties of stochastic semilinear equations by method of lower measures. Colloq. Math. 79 (1997), 147–171
MR 1425551
[58] S. Mück:
Semilinear stochastic equations for symmetric diffusions. Stochastics Stochastics Rep., to appear (1998)
MR 1613264
[59] C. Mueller:
Coupling and invariant measures for the heat equation with noise. Ann. Probab. 21 (1993), 2189–2199
MR 1245306 |
Zbl 0795.60056
[60] S. Peszat J. Zabczyk:
Strong Feller property and irreducibility for diffusions on Hilbert spaces. Ann. Probab. 23 (1995), 157–172
MR 1330765
[61] J. Seidler:
Ergodic behaviour of stochastic parabolic equations. Czechoslovak Math. J. 47 (122) (1997), 277–316
MR 1452421 |
Zbl 0935.60041
[62] R. Sowers:
Large deviations for the invariant measure of a reaction-diffusion equation with non-Gaussian perturbations. Probab. Theory Related Fields 92 (1994), 393–421
MR 1165518
[63] Ł. Stettner:
Remarks on ergodic conditions for Markov processes on Polish spaces. Bull. Polish Acad. Sci. Math. 42 (1994), 103–114
MR 1810695 |
Zbl 0815.60072
[64] D. W. Stroock:
Logarithmic Sobolev inequality for Gibbs states. Dirichlet forms (Varenna, 1992), 194–228, Lecture Notes in Math. 1563, Springer-Verlag, Berlin 1993
MR 1292280
[65] M. J. Vishik A. V. Fursikov: Mathematical problems of stochastic hydromechanics. Kluwer Academic Publishers, Dordrecht 1988
[66] J. Zabczyk:
Structural properties and limit behaviour of linear stochastic systems in Hilbert spaces. Mathematical control theory, 591–609, Banach Center Publications Vol. 14, PWN, Warsaw 1985
MR 0851253 |
Zbl 0573.93076
[67] B. Zegarlinski:
Ergodicity of Markov semigroups. Stochastic partial differential equations (Edinburgh, 1994), 312–337, Cambridge University Press, Cambridge 1995
MR 1352750