Previous |  Up |  Next

Article

Keywords:
Stochastic evolution equations; invariant measures; ergodic theorems; stability
Summary:
The paper presents a review of some recent results on uniqueness of invariant measures for stochastic differential equations in infinite-dimensional state spaces, with particular attention paid to stochastic partial differential equations. Related results on asymptotic behaviour of solutions like ergodic theorems and convergence of probability laws of solutions in strong and weak topologies are also reviewed.
References:
[1] S. Albeverio V. Bogachev M. Röckner: On uniqueness of invariant measures for finite and infinite dimensional diffusions. Universität Bielefeld, SFB 343, Preprint 97–057
[2] S. Albeverio, Yu. G. Kondratiev M. Röckner: Ergodicity of $L^2$-semigroups and extremality of Gibbs states. J. Funct. Anal. 144 (1997), 394–423 MR 1432591
[3] S. Albeverio, Yu. G. Kondratiev M. Röckner: Ergodicity for the stochastic dynamics of quasi-invariant measures with applications to Gibbs states. J. Funct. Anal. 149 (1997), 415–469 MR 1472365
[4] A. Bensoussan A. Răşcanu: Large time behaviour for parabolic stochastic variational inequalities. An. Ştiinţ. Univ. Al. I. Cuza Iaşi Secţ. I a Mat. 42 (1996), 149–173 MR 1608249
[5] V. I. Bogachev N. Krylov M. Röckner: Regularity of invariant measures: the case of non-constant diffusion part. J. Funct. Anal. 138 (1996), 223–242 MR 1391637
[6] V. I. Bogachev M. Röckner: Regularity of invariant measures in finite and infinite dimensional spaces and applications. J. Funct. Anal. 133 (1995), 168–223 MR 1351647
[7] V. Bogachev M. Röckner T. S. Zhang: Existence and uniqueness of invariant measures: an approach via sectorial forms. Universität Bielefeld, SFB 343, Preprint 97–072
[8] A. Chojnowska-Michalik B. Goldys: Existence, uniqueness and invariant measures for stochastic semilinear equations in Hilbert spaces. Probab. Theory Related Fields 102 (1995), 331-356 MR 1339737
[9] I. D. Chueshov T. V. Girya: Inertial manifolds and forms for semilinear parabolic equations subjected to additive noise. Lett. Math. Phys. 34 (1995), 69–76 MR 1334036
[10] G. Da Prato A. Debussche: Stochastic Cahn-Hilliard equation. Nonlinear Anal. 26 (1996), 241–263 MR 1359472
[11] G. Da Prato K. D. Elworthy J. Zabczyk: Strong Feller property for stochastic semilinear equations. Stochastic Anal. Appl. 13 (1995), 35–45 MR 1313205
[12] G. Da Prato D. Gątarek: Stochastic Burgers equation with correlated noise. Stochastics Stochastics Rep. 52 (1995), 29–41 MR 1380259
[13] G. Da Prato D. Gątarek J. Zabczyk: Invariant measures for semilinear stochastic equations. Stochastic Anal. Appl. 10 (1992), 387–408 MR 1178482
[14] G. Da Prato D. Nualart J. Zabczyk: Strong Feller property for infinite-dimensional stochastic equations. Scuola Normale Superiore Pisa, Preprints di Matematica n. 33/1994
[15] G. Da Prato J. Zabczyk: Smoothing properties of transition semigroups in Hilbert spaces. Stochastics Stochastics Rep. 35 (1991), 63–77 MR 1110991
[16] G. Da Prato J. Zabczyk: Non-explosion, boundedness and ergodicity for stochastic semilinear equations. J. Differential Equations 98 (1992), 181–195 MR 1168978
[17] G. Da Prato J. Zabczyk: On invariant measure for semilinear equations with dissipative nonlinearities. Stochastic partial differential equations and their applications (Charlotte, 1991), 38–42, Lecture Notes in Control Inform. Sci. 176, Springer 1992 MR 1176769
[18] G. Da Prato J. Zabczyk: Stochastic equations in infinite dimensions. Cambridge University Press, Cambridge 1992 MR 1207136
[19] G. Da Prato J. Zabczyk: Convergence to equilibrium for classical and quantum spin systems. Probab. Theory Related Fields 103 (1995), 529–552 MR 1360204
[20] G. Da Prato J. Zabczyk: Ergodicity for infinite dimensional systems. Cambridge University Press, Cambridge 1996 MR 1417491
[21] J. L. Doob: Asymptotic properties of Markoff transition probabilities. Trans. Amer. Math. Soc. 63 (1948), 393–421 MR 0025097 | Zbl 0041.45406
[22] M. Duflo D. Revuz: Propriétés asymptotiques de probabilités de transition des processus de Markov récurrents. Ann. Inst. H. Poincaré Probab. Statist. 5 (1969), 233–244 MR 0273680
[23] B. Ferrario: Ergodic results for stochastic Navier-Stokes equation. Stochastics Stochastics Rep. 60 (1997), 271–288 MR 1467721 | Zbl 0882.60059
[24] F. Flandoli B. Maslowski: Ergodicity of the 2–D Navier-Stokes equation under random perturbations. Comm. Math. Phys. 171 (1995), 119–141 MR 1346374
[25] M. I. Freidlin: Random perturbations of reaction-diffusion equations: the quasi-deterministic approximation. Trans. Amer. Math. Soc. 305 (1988), 665–697 MR 0924775 | Zbl 0673.35049
[26] M. Fuhrman: Smoothing properties of nonlinear stochastic equations in Hilbert spaces. NODEA Nonlinear Differential Equations Appl. 3 (1996), 445–464 MR 1418590 | Zbl 0866.60050
[27] D. Gątarek B. Gołdys: Existence, uniqueness and ergodicity for the stochastic quantization equation. Studia Math. 119 (1996), 179–193 MR 1391475
[28] D. Gątarek B. Goldys: On invariant measures for diffusions on Banach spaces. Potential Anal. 7 (1997), 539–553 MR 1467205
[29] T. V. Girya: On stabilization of solutions to nonlinear stochastic parabolic equations. Ukrain. Mat. Zh. 41 (1989), 1630–1636 (in Russian) MR 1042959
[30] T. V. Girya I. D. Khueshov: Inertial manifolds and stationary measures for dissipative dynamical systems with a random perturbation. Mat. Sb. 186 (1995), 29–46 (in Russian) MR 1641664
[31] Hu Xuanda: Boundedness and invariant measures of semilinear stochastic evolution equations. Nanjing Daxue Xuebao Shuxue Bannian Kan 4 (1987), 1–14 MR 0916950 | Zbl 0652.60065
[32] A. Ichikawa: Semilinear stochastic evolution equations: Boundedness, stability and invariant measures. Stochastics 12 (1984), 1–39 MR 0738933 | Zbl 0538.60068
[33] Ya. Sh. Il’yasov A. I. Komech: The Girsanov theorem and ergodic properties of statistical solutions to nonlinear parabolic equations. Trudy Sem. Petrovskogo 12 (1987), 88–117 (in Russian) MR 0933054
[34] S. Jacquot: Strong ergodicity results on Wiener space. Stochastics Stochastics Rep. 51 (1994), 133–154 MR 1380766 | Zbl 0851.60059
[35] S. Jacquot: Simulated annealing for stochastic semilinear equations in Hilbert spaces. Stochastic Process. Appl. 64 (1996), 73–91 MR 1419493
[36] S. Jacquot G. Royer: Ergodicité d’une classe d’équations aux dérivées partielles stochastiques. C. R. Acad. Sci. Paris Sér. Math. 320 (1995), 231–236 MR 1320362
[37] R. Z. Khas’minskiĭ: Ergodic properties of recurrent diffusion processes and stabilization of solutions to the Cauchy problem for parabolic equations. Teor. Veroyatnost. i Primenen. 5 (1960), 196–214 (in Russian) MR 0133871
[38] R. Z. Khas’minskiĭ: Stability of systems of differential equations under random perturbations of their parameters. Nauka, Moskva 1969 (in Russian); English translation: Stochastic stability of differential equations, Sijthoff & Noordhoff, Alphen aan den Rijn 1980
[39] Yu. G. Kondratiev S. Roelly H. Zessin: Stochastic dynamics for an infinite system of random closed strings: A Gibbsian point of view. Stochastic Process. Appl. 61 (1996), 223–248 MR 1386174
[40] S. M. Kozlov: Some problems concerning stochastic partial differential equations. Trudy Sem. Petrovskogo 4 (1978), 147–172 (in Russian) MR 0524530
[41] H.-H. Kuo: Gaussian measures in Banach spaces. Lecture Notes in Math. 463, Berlin 1975 MR 0461643 | Zbl 0306.28010
[42] G. Leha G. Ritter: Lyapunov-type conditions for stationary distributions of diffusion processes on Hilbert spaces. Stochastics Stochastics Rep. 48 (1994), 195–225 MR 1782748
[43] G. Leha G. Ritter: Stationary distributions of diffusion processes with singular drift on Hilbert spaces. in preparation
[44] R. Manthey B. Maslowski: Qualitative behaviour of solutions of stochastic reaction-diffusion equations. Stochastic Process. Appl. 43 (1992), 265–289 MR 1191151
[45] R. Marcus: Parabolic Itô equations. Trans. Amer. Math. Soc. 198 (1974), 177–190 MR 0346909
[46] R. Marcus: Parabolic Itô equations with monotone nonlinearities. J. Funct. Anal. 29 (1978), 275–286 MR 0512245 | Zbl 0397.47034
[47] R. Marcus: Stochastic diffusion on an unbounded domain. Pacific J. Math. 84 (1979), 143–153 MR 0559632 | Zbl 0423.60056
[48] G. Maruyama H. Tanaka: Ergodic property of $N$-dimensional recurrent Markov processes. Mem. Fac. Sci. Kyushu Univ. Ser. A 13 (1959), 157–172 MR 0112175
[49] B. Maslowski: Uniqueness and stability of invariant measures for stochastic differential equations in Hilbert spaces. Stochastics Stochastics Rep. 28 (1989), 85–114 MR 1018545 | Zbl 0683.60037
[50] B. Maslowski: Strong Feller property for semilinear stochastic evolution equations and applications. Stochastic systems and optimization (Warsaw, 1988), 210–224, Lecture Notes in Control Inform. Sci. 136, Springer-Verlag, Berlin 1989 MR 1180781
[51] B. Maslowski: On ergodic behaviour of solutions to systems of stochastic reaction-diffusion equations with correlated noise. Stochastic processes and related topics (Georgenthal, 1990), 93–102, Akademie-Verlag, Berlin 1991 MR 1127885
[52] B. Maslowski: On probability distributions of solutions of semilinear stochastic evolution equations. Stochastics Stochastics Rep. 45 (1993), 17–44 MR 1277360 | Zbl 0792.60058
[53] B. Maslowski: Stability of semilinear equations with boundary and pointwise noise. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 22 (1995), 55–93 MR 1315350 | Zbl 0830.60056
[54] B. Maslowski: Asymptotic properties of stochastic equations with boundary and pointwise noise. Stochastic processes and related topics (Siegmundsburg, 1994), 67–76, Gordon and Breach, Amsterdam 1996 MR 1393497
[55] B. Maslowski J. Seidler: Ergodic properties of recurrent solutions of stochastic evolution equations. Osaka J. Math. 31 (1994), 965–1003 MR 1315015
[56] B. Maslowski J. Seidler: Probabilistic approach to the strong Feller property. in preparation
[57] B. Maslowski I. Simão: Asymptotic properties of stochastic semilinear equations by method of lower measures. Colloq. Math. 79 (1997), 147–171 MR 1425551
[58] S. Mück: Semilinear stochastic equations for symmetric diffusions. Stochastics Stochastics Rep., to appear (1998) MR 1613264
[59] C. Mueller: Coupling and invariant measures for the heat equation with noise. Ann. Probab. 21 (1993), 2189–2199 MR 1245306 | Zbl 0795.60056
[60] S. Peszat J. Zabczyk: Strong Feller property and irreducibility for diffusions on Hilbert spaces. Ann. Probab. 23 (1995), 157–172 MR 1330765
[61] J. Seidler: Ergodic behaviour of stochastic parabolic equations. Czechoslovak Math. J. 47 (122) (1997), 277–316 MR 1452421 | Zbl 0935.60041
[62] R. Sowers: Large deviations for the invariant measure of a reaction-diffusion equation with non-Gaussian perturbations. Probab. Theory Related Fields 92 (1994), 393–421 MR 1165518
[63] Ł. Stettner: Remarks on ergodic conditions for Markov processes on Polish spaces. Bull. Polish Acad. Sci. Math. 42 (1994), 103–114 MR 1810695 | Zbl 0815.60072
[64] D. W. Stroock: Logarithmic Sobolev inequality for Gibbs states. Dirichlet forms (Varenna, 1992), 194–228, Lecture Notes in Math. 1563, Springer-Verlag, Berlin 1993 MR 1292280
[65] M. J. Vishik A. V. Fursikov: Mathematical problems of stochastic hydromechanics. Kluwer Academic Publishers, Dordrecht 1988
[66] J. Zabczyk: Structural properties and limit behaviour of linear stochastic systems in Hilbert spaces. Mathematical control theory, 591–609, Banach Center Publications Vol. 14, PWN, Warsaw 1985 MR 0851253 | Zbl 0573.93076
[67] B. Zegarlinski: Ergodicity of Markov semigroups. Stochastic partial differential equations (Edinburgh, 1994), 312–337, Cambridge University Press, Cambridge 1995 MR 1352750
Partner of
EuDML logo