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Abstract. In this paper we give a survey on the theory of quadratic func-
tionals. Particularly the relationships between positive definiteness and the
asymptotic behaviour of Riccati matrix differential equations, and between
the oscillation properties of linear Hamiltonian systems and Rayleigh’s
principle are demonstrated. Moreover, the main tools form control the-
ory (as e.g. characterization of strong observability), from the calculus of
variations (as e.g. field theory and Picone’s identity), and from matrix
analysis (as e.g. l’Hospital’s rule for matrices) are discussed.
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1 Introduction

This article presents a survey on the theory of quadratic functionals as described
in a recent book by W. Kratz [13]. This theory is based mainly on the work by
M. Morse and W. T. Reid (see [16] and [18]). We introduce the necessary notions
and formulate the central results, but without any proofs. The setup of the paper
is as follows.

In the next section we introduce the necessary notation and basic concepts,
namely: We consider quadratic functionals for state and control functions, which
satisfy a linear differential system (called the equations of motion), and for which
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the state function satisfies additionally some linear and homogeneous boundary
condition. Classical methods of the calculus of variations lead to a self-adjoint
eigenvalue problem consisting of a linear Hamiltonian system and boundary condi-
tions (including the corresponding Euler equation and the natural boundary con-
ditions). These eigenvalue problems contain e.g. the well-known Sturm-Liouville
problems. The study of oscillation properties of the Hamiltonian system requires
the concept of conjoined bases and their focal points, which includes in a certain
sense the basic notion of disconjugacy. Moreover, the central notions of controlla-
bility and strong observability (or observability with unknown inputs) from control
theory play a key role in the theory as well as Riccati matrix differential equations
corresponding to linear Hamiltonian systems.

In Section 3 we formulate the main results concerning the positivity of quad-
ratic functionals. Theorem 4 states a Reid Roundabout Theorem, which includes
e.g. the well-known Jacobi condition from the calculus of variations as a special
case. Theorem 5 concerns the positivity of a quadratic functional depending on
a parameter. It states essentially that the positivity of the functional for small
values of the parameter is equivalent to a certain asymptotic behaviour of the cor-
responding Riccati equation, and that it is also equivalent to strong observability
of the underlying linear system.

In Section 4 we present in Theorem 7 the central oscillation theorem for Hamil-
tonian systems. The next Theorem 9 states the basic properties of the correspond-
ing eigenvalue problem, i.e., existence of eigenvalues, Rayleigh’s principle, and the
expansion theorem.

Finally, we describe in Section 5 the main tools for the proofs. These tools in-
clude results from the calculus of variations (as e.g. Picone’s identity), from matrix
analysis (as e.g. properties of monotone matrix-valued functions), from linear con-
trol theory (as e.g. a canonical form for controllable systems), and from functional
analysis (Ehrling’s lemma). We formulate explicitly two basic results, namely a
substitute of l’Hospital’s rule for matrices in Theorem 10 and a characterization
of strong observability for time-dependent systems in Theorem 11.

2 Notation and basic concepts

First we introduce quadratic functionals

F(x) :=

b
∫

a

{

xT Cx + uT Bu
}

(t)dt +

(

−x(a)
x(b)

)T

S1

(

−x(a)
x(b)

)

, (1)

and bilinear forms

〈x, y〉0 :=

b
∫

a

{

xT C0y
}

(t)dt , 〈x, y〉 := 〈x, y〉0 +

(

−x(a)
x(b)

)T

S0

(

−y(a)
y(b)

)

, (2)
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where x (or (x, u)) is (A, B)-admissible , i.e., the so-called equations of motion
ẋ = Ax + Bu hold on I := [a, b] for some control u with Bu ∈ Cs(I) (i.e., Bu is
piecewise continuous on I), and where it satisfies boundary conditions of the form
(

−x(a)
x(b)

)

∈ V , we write x ∈ R̃, and where the same holds for y. Throughout we

impose the following assumptions on the given data:

(A) A(t), B(t), C(t), C0(t) are real n×n-matrix-valued functions, which are piece-
wise continuous on R, B(t), C(t), C0(t) are symmetric, and B(t), C0(t) are
non-negative definite (we write B(t) ≥ 0, C0(t) ≥ 0) for t ∈ R. V ⊂ R

2n is
a subspace of R

2n, S0 and S1 are real and symmetric 2n × 2n-matrices, and
S0 ≥ 0.

Let R2, S2 be 2n × 2n-matrices, such that V = Im RT
2 and S2R

T
2 = 0,

rank (R2, S2) = 2n (see [13, Corollary 3.1.3]). We put

R1(λ) := R2(S1 − λS0) + S2 , R1 := R1(0) (3)

for λ ∈ R. By Im, rank, ker we denote the image, rank, kernel of a matrix, and I
denotes the identity matrix of corresponding size.

The pair (x, u) is stationary for the functional F if it satisfies the natural
boundary conditions and the Euler equations u̇ = Cx−AT u. These Euler equations
lead together with the equations of motion to the linear Hamiltonian system

ẋ = Ax + Bu , u̇ = Cx − AT u , (H)

and the natural boundary conditions together with the given boundary conditions
R̃ lead to the self-adjoint boundary conditions (Bλ) below with λ = 0.

We need the following basic notions (see [13]).

Definition 1.

(i) (X, U) is called a conjoined basis of (H), if X(t), U(t) are real n × n-matrix-
valued solutions of (H) with

rank (XT (t), UT (t)) ≡ n , XT (t)U(t) − UT (t)X(t) ≡ 0 on R .

(ii) Two conjoined bases (X1, U1) and (X2, U2) are called normalized conjoined
bases of (H) if XT

1 (t)U2(t) − UT
1 (t)X2(t) ≡ I on R; and (X̃1, Ũ1), (X̃2, Ũ2)

denote the special normalized bases of (H), which satisfy the initial conditions

X̃1(a) = Ũ2(a) = 0 , Ũ1(a) = −X̃2(a) = I ,

and then (X̃1, Ũ1) is called the principal solution at a .

(iii) A point t0 ∈ R is called a focal point of X (or (X, U)) for a conjoined basis
(X, U), if X(t0) is non-invertible, and the dimension of the kernel of X(t0) is
called its multiplicity.
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(iv) The pair (A, B) is called controllable on J , if v̇ = −AT (t)v, BT (t)v(t) ≡ 0 on
some non-degenerate interval J̃ ⊂ J always implies that v(t) ≡ 0 on J̃ (see
also [6, Definition 1.2.4] for “uniformly controllable”).

(v) The triple (A, B, C0) (or the linear system

ẋ = Ax + Bu , y = C0 x (LS)

with state x, input u, and output y) is called strongly observable on J if
ẋ = A(t)x+B(t)u, C0(t)x(t) ≡ 0 on some non-degenerate interval J̃ ⊂ J for
some function u with Bu ∈ Cs(J̃ ) always implies that x(t) ≡ 0 on J̃ .

Given any conjoined basis (X, U) of (H) there exists another conjoined basis
(X2, U2) such that (X1 = X, U1 = U), (X2, U2) are normalized conjoined bases
(see [13, Proposition 4.1.1]). By [13, Theorem 4.1.3] controllability of (A, B) is the
same as saying that the focal points of every conjoined basis of (H) are isolated.
Obviously, strong observability of (A, B, C0) means that the bilinear form 〈·, ·〉0
is an inner product on the space of all (A, B)-admissible functions. Moreover, it
is well-known (see [19] or [13]) that, for any conjoined basis (X, U) of (H), the
quotient Q(t) := U(t)X−1(t) satisfies the Riccati matrix differential equation

Q̇ + AT Q + QA + QBQ − C = 0 , (R)

whenever X(t) is invertible.

The investigation of extremal values if the so-called Rayleigh quotient R(x) :=
F(x)/〈x, x〉 leads to functions x and reals λ, where the functional

F(x, λ) := F(x) − λ〈x, x〉 (4)

is stationary. Hence, these values λ are the eigenvalues of the eigenvalue problem
(E), which consists of the Hamiltonian system

ẋ = Ax + Bu , u̇ = (C − λC0)x − AT u , (Hλ)

and of the 2n linear and homogeneous boundary conditions

R1(λ)

(

−x(a)
x(b)

)

+ R2

(

u(a)
u(b)

)

= 0 , i.e. , (x, u) ∈ R(λ) . (Bλ)

Note that (H)=(H0), and that (x, u) ∈ R(λ) implies that x ∈ R̃. Moreover, as
above, there corresponds to (Hλ) a Riccati equation, namely:

Q̇ + AT Q + QA + QBQ − C + λC0 = 0 . (Rλ)

Remark 2. If the matrix B(t) is positive definite for t ∈ I, then the functional F
and the equation of motion, i.e., u = B−1(ẋ − Ax), reduce to a quadratic func-
tional occurring as second variation in the classical calculus of variations, which
satisfies the strengthened Legendre condition. Moreover, our eigenvalue problems
(E) include the self-adjoint Sturm-Liouville problems of even order as a special
case, where e.g. rank B(t) = rank C0(t) ≡ 1.
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3 Positivity

In this section we derive criteria for the positive definiteness of the functionals
F(·) and F(·, λ).

Definition 3. The functional F is called positive definite, we write F > 0, if
F(x) > 0 for all (A, B)-admissible x with x ∈ R̃ and x(t) 6≡ 0 on I.

Our first result includes the classical Jacobi condition from the calculus of
variations, and it is often called “Reid Roundabout Theorem” (see [1], [2], [4], [5],
[18]).

Theorem 4. Assume (A), and suppose that the pair (A, B) is controllable on I.
Then F > 0 if and only if the following two assertions hold:

(i) X̃1(t) possesses no focal point in (a, b].

(ii) The matrix M := R2{S1 + M̃}RT
2 is positive definite on Im R2, where the

matrix M̃ is defined by

M̃ :=

(

−X̃−1
1 X̃2 X̃−1

1
(

X̃−1
1

)T

Ũ1X̃
−1
1

)

(b) . (5)

This result is [13, Theorem 2.4.1]. Note that the matrices M̃ and M are sym-
metric and that assertion (ii) is empty (i.e., always satisfied), if R2 = 0. The
connection between the Hamiltonian system (H) and the Riccati equation (R)
yields quite easily that the assertion (i) is equivalent with:

(i’) The Riccati equation (R) possesses a symmetric solution Q(t) on I.

Moreover, in the case of so-called “separated boundary conditions” there is an-
other result [13, Theorem 2.4.2], which uses only one conjoined basis (rather
than (X̃1, Ũ1) and (X̃2, Ũ2) as above) depending on the boundary conditions (see
also [5]).

Our next result concerns the positivity of F(·, λ) for sufficiently small values
of λ, and it is contained in the recent paper [15, Theorem 2]. It requires additional
smoothness assumptions on the given data, i.e., for n ≥ 2,

A ∈ C2n−3
s (R) , B ∈ C2n−3

s (R) , C0 ∈ C2n−2
s (R) . (A1)

Theorem 5. Assume (A), (A1), and suppose that the pair (A, B) is controllable
on R. Then the following statements are equivalent:

(i) The linear system (LS) is strongly observable on R.
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(ii) For all non-degenerate intervals I = [a, b] and symmetric matrices Q0 the
solution Q(t; λ) of (Rλ) with the initial condition Q(a; λ) ≡ Q0 exists on I,
if λ is sufficiently small, and

lim
λ→−∞

Q(b; λ) = ∞

(i.e., all eigenvalues of the symmetric matrix Q(b; λ) tend to infinity as λ →
−∞).

(iii) For all non-degenerate intervals I = [a, b], subspaces V ⊂ R
2n, symmetric

matrices S1 and S0 with S0 ≥ 0, there exists λ0 ∈ R such that (see (4))

F(·, λ) > 0 for all λ ≤ λ0 ,

and then, moreover,

min{R(x) = F(x)/〈x, x〉 : x is (A, B)-admissible , x ∈ R̃ , x 6≡ 0}

exists.

Remark 6. The assertion (iii) has the following interpretation in terms of the “op-
timal linear regulator problem” in control theory (see [10]), namely:
For given data the following LQ-problem with output energy constraints possesses
a minimum. Minimize the quadratic functional F(x) for (A, B)-admissible x ∈ R̃
under the additional “output energy” constraint 〈x, x〉 = 1.

4 Oscillation and Rayleigh’s principle

In this section we formulate the main results on the oscillation of solutions of
the Hamiltonian system (H) and on the eigenvalue problem (E). The oscillation
theorem follows immediately from [13, Theorem 7.2.2] by using assertion (ii) or
(iii) of Theorem 5.

Theorem 7 (Oscillation). Assume (A), (A1), and suppose that the pair (A, B)
is controllable on I and that the linear system (LS) is strongly observable on I.
Let (X, U) be any conjoined basis of (H), such that X(a) and X(b) are invertible.
Then

n1 + n2 = n3 + n ,

where n1 denotes the number of focal points of X (including multiplicities)
in (a, b) ;

n3 denotes the number of eigenvalues (E) (including multiplicities),
which are less than zero; and where

n2 denotes the number of negative eigenvalues of the symmetric
3n × 3n-matrix M, which is defined by
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M := R2





∆ −X−1(a) −X−1(b)
−(X−1)T (a) −U(a)X−1(a) 0
−(X−1)T (b) 0 U(b)X−1(b)



RT
2 + R1 R

T
2 ,

where R1 :=

(

0 0
0 R1

)

, R2 :=

(

I 0
0 R2

)

, ∆ := X−1(a)X2(a) − X−1(b)X2(b)

with conjoined basis (X2, U2) such that (X, U) and (X2, U2) constitute normalized
conjoined bases of (H).

Remark 8. If the matrix X(a) or X(b) is not invertible, then the same result
holds but with a more complicated matrix M, the definition of which needs more
notation (see [13, Theorem 7.2.2]).

By using a generalized “Picone identity” [13, Theorem 1.2.1] this oscillation
theorem is the main tool to derive Rayleigh’s principle for our eigenvalue (E) (see
[13, Theorem 7.7.1 and Theorem 7.7.6]), namely:

Theorem 9 (Rayleigh’s principle). Assume (A), (A1), and suppose that the
pair (A, B) is controllable on I and that the linear system (LS) is strongly observ-
able on I. Then the following statements hold:

(i) There exist infinitely many eigenvalues λk of the eigenvalue problem (E) with
λk → ∞ (let −∞ < λ1 ≤ λ2 ≤ · · · denote these eigenvalues including multi-
plicities with corresponding orthonormal eigenfunctions (x1, u1), (x2, u2), . . . ,
so that 〈xk, xℓ〉 = δkℓ).

(ii) Rayleigh’s principle holds, i.e. for k = 0, 1, 2, . . . ,

λk+1 = min
{

R(x) =
F(x)

〈x, x〉
: x is (A, B)-admissible , x ∈ R̃ , x 6≡ 0 ,

and 〈x, xν 〉 = 0 for ν = 1, . . . , k
}

.

(iii) The expansion theorem holds, i.e.

x =

∞
∑

ν=1

〈xν , x〉xν , i.e., lim
k→∞

∥

∥

∥x −

k
∑

ν=1

〈xν , x〉xν

∥

∥

∥ = 0 ,

for all (A, B)-admissible x with x ∈ R̃, where ‖ · ‖ =
√

〈·, ·〉.

5 Tools

In this section we discuss the main tools for the proof of our theorems cited above.
As already mentioned in the previous section a generalization of an identity

due to Picone [17] (see also [21]) is the basis of the proof of Rayleigh’s principle,
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i.e., Theorem 9, given in [13]. This extended version of Picone’s formula can be
derived from field theory (see e.g. [18]) as discussed in [13, Section 1.3].

The basic tools for the proof of the oscillation theorem, i.e., Theorem 7, come
from matrix analysis (see [13, Chapter 3]). These results concern in particular limit
and rank theorems for monotone matrix-valued functions (see [8], [11]). The basis
for the limit theorem is a substitute of l’Hospital’s rule for matrices [7, Theorem 1],
namely:

Theorem 10. Suppose that X, U are real n × n-matrices such that it is fulfilled
rank (XT , UT ) = n and XT U = UT X. Then

lim
S→0+

X(X + SU)−1 = 0 ,

where S → 0+ stands for S → 0 and S > 0.

This theorem together with monotonicity properties of the Riccati matrix dif-
ferential equation (R) [13, Section 5.1] leads to the asymptotic behaviour of solu-
tions of (R) (see [9] or [13, Chapter 6]).

Moreover, there are needed results from linear control theory. The asymptotics
of Riccati equations requires, besides the results from matrix analysis above, in
particular a certain canonical form of controllable pairs. While the Reid Round-
about Theorem, i.e., Theorem 4, may be proven by using mainly Picone’s identity,
the proof of Theorem 5 given in [15] depends essentially on two results. The first
result is the following characterization of strong observability for time-dependent
systems [14, Theorem 2].

Theorem 11. Assume (A1). Then the linear system (LS) is strongly observable
on some interval I if and only if

rank S(t) = n + rank T (t)

for t ∈ I except on a nowhere dense subset of I, where the matrix-valued func-
tions S : R → R

n2
×n2

, T : R → R
n2

×n(n−1) are defined as follows: First denote
recursively Ck = Ck(t), Bµν = Bµν(t) by

C1 := C0 , Cµ+1 := Ċµ + Cµ A for µ = 1, . . . , n − 1,
Bµ+1,µ := C0B for 0 ≤ µ ≤ n − 1 ,

Bµ+1,0 := Cµ+1B + Ḃµ0 for 1 ≤ µ ≤ n − 1 ,

Bµ+1,ν := Bµ,ν−1 + Ḃµν for 1 ≤ ν < µ ≤ n − 1 ;

and (in block form) S := [Q, T ] with

Q :=















C1

C2

C3

...
Cn















, T :=















0 0 . . . 0
B10 0 . . . 0
B20 B21 . . . 0
...

...
. . .

...
Bn−1,0 Bn−1,1 . . . Bn−1,n−2















.
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This result reduces to [12, Theorem 2] or [13, Theorem 3.5.7] for time-invariant
systems. In case B = 0, the theorem gives a characterization of controllabil-
ity/observability (see [14, Theorem 1] and [6, Theorem 1.3.2 and Theorem 1.4.4]).

The second tool for the proof of Theorem 5 is a result from functional analy-
sis, namely an application of the so-called Ehrling lemma (see [20, Lemma 8] or
[3, 8.3]).
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