Previous |  Up |  Next

Article

Summary:
Let us have a $r \times c$ contingency table with positive frequencies. The interaction is derived which is statistically most significant. A direct proof is given that the test based on this most significant interaction is asymptotically equivalent with the common $\chi^2$-test (under the hypothesis of independence in the contingency table).
References:
[1] Goodman L. A.: On Placketťs test for contingency table interactions. J. Roy. Statist. Soc. Ser. B 25 (1963), 179-188. MR 0175232
[2] Goodman L. A.: Simple methods for analyzing three - factor interaction in contingency tables. J. Amer. Statist. Assoc. 59 (1964), 319-352. DOI 10.1080/01621459.1964.10482163 | MR 0163393 | Zbl 0129.33101
[3] Goodman L. A.: Interactions in multidimensional contingency tables. Ann. Math. Statist. 35 (1964), 632-646. DOI 10.1214/aoms/1177703561 | MR 0162317 | Zbl 0136.40803
[4] Goodman L. A.: Simultaneous confidence limits for cross - product ratios in contingency tables. J. Roy. Statist. Soc. Ser. B 26 (1964), 86-102. MR 0175264 | Zbl 0129.32304
[5] Rao C. R.: Linear statistical inference and its applications. Wiley, New York 1965. MR 0221616 | Zbl 0137.36203
Partner of
EuDML logo