Previous |  Up |  Next

Article

Summary:
The existence of a "variational" solution to the system of nonlinear equations, governing the equilibrium of a thin elastic plate is proved. The boundary conditions correspond with a plate, the edge of which is partially clamped, supported and elastically supported or clamped, being loaded by moments, transversal loads and by forces in the plane of the plate. In Part I only "fixed" plates are studied, i.e. such that any deflection of a rigid plate on rigid supports and clampings is eliminated by the kinematic constraints.
References:
[1] Berger M. S., Fife P.: On von Kármán's equations and the buckling of a thin elastic plate, II. Plate with general edge conditions. Comm. Pure Appl. Math., 21 (1968), 227-241. DOI 10.1002/cpa.3160210303 | MR 0229978
[2] Brézis H.: Équations et inéquations non-linéaires dans les espaces véctoriels en dualité. Ann. Inst. Fourier, Grenoble, 18 (1968), 115-176. DOI 10.5802/aif.280 | MR 0270222
[3] Fife P.: Non-linear deflection of thin elastic plates under tension. Comm. Pure Appl. Math., 14 (1961), 81-112. DOI 10.1002/cpa.3160140202 | MR 0128697 | Zbl 0099.40802
[4] Hlaváček I., Nečas J.: On inequalities of Korn's type, I. Boundary-value problems for elliptic systems of partial differential equations. Arch. Rat. Mech. Anal., 36 (1970) 305-311. MR 0252844 | Zbl 0193.39001
[5] Jakovlev G. N.: Boundary properties of functions of class $W_p^{(1)}$ on the domains with angular points. (Russian). DAN SSSR, 140 (1961), 73-76. MR 0136988
[6] Knightly G. H.: An existence theorem for the von Kármán equations. Arch. Rat. Mech. Anal., 27 (1967), 233-242. DOI 10.1007/BF00290614 | MR 0220472 | Zbl 0162.56303
[7] Knightly G. H., Sather D.: On nonuniqueness of solutions of the von Kármán equations. Arch. Rat. Mech. Anal., 36 (1970), 65-78. DOI 10.1007/BF00255747 | MR 0261835 | Zbl 0188.57603
[8] Morozov N. F.: Nonlinear problems in the theory of thin plates. (Russian). Vestnik Leningr. Univ., 19 (1955), 100-124. MR 0102224
[9] Naumann J.: An existence theorem for the v. Kármán equations under free boundary conditions. Apl. mat. 19 (1974), 17-27. MR 0346294
[10] Naumann J.: On bifurcation buckling of thin elastic shells. (to appear). MR 0373426 | Zbl 0303.73031
[11] Nečas J.: Les méthodes directes en théorie des equations elliptiques. Academia, Prague 1967. MR 0227584
Partner of
EuDML logo