Previous |  Up |  Next

Article

Title: The most significant interaction in a contingency table (English)
Author: Anděl, Jiří
Language: English
Journal: Aplikace matematiky
ISSN: 0373-6725
Volume: 19
Issue: 4
Year: 1974
Pages: 246-252
Summary lang: English
Summary lang: Czech
.
Category: math
.
Summary: Let us have a $r \times c$ contingency table with positive frequencies. The interaction is derived which is statistically most significant. A direct proof is given that the test based on this most significant interaction is asymptotically equivalent with the common $\chi^2$-test (under the hypothesis of independence in the contingency table). ()
MSC: 62F05
MSC: 62G10
MSC: 62H99
idZBL: Zbl 0314.62021
idMR: MR0388619
DOI: 10.21136/AM.1974.103538
.
Date available: 2008-05-20T17:59:15Z
Last updated: 2020-07-28
Stable URL: http://hdl.handle.net/10338.dmlcz/103538
.
Reference: [1] Goodman L. A.: On Placketťs test for contingency table interactions.J. Roy. Statist. Soc. Ser. B 25 (1963), 179-188. MR 0175232
Reference: [2] Goodman L. A.: Simple methods for analyzing three - factor interaction in contingency tables.J. Amer. Statist. Assoc. 59 (1964), 319-352. Zbl 0129.33101, MR 0163393, 10.1080/01621459.1964.10482163
Reference: [3] Goodman L. A.: Interactions in multidimensional contingency tables.Ann. Math. Statist. 35 (1964), 632-646. Zbl 0136.40803, MR 0162317, 10.1214/aoms/1177703561
Reference: [4] Goodman L. A.: Simultaneous confidence limits for cross - product ratios in contingency tables.J. Roy. Statist. Soc. Ser. B 26 (1964), 86-102. Zbl 0129.32304, MR 0175264
Reference: [5] Rao C. R.: Linear statistical inference and its applications.Wiley, New York 1965. Zbl 0137.36203, MR 0221616
.

Files

Files Size Format View
AplMat_19-1974-4_4.pdf 909.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo