Title:
|
The most significant interaction in a contingency table (English) |
Author:
|
Anděl, Jiří |
Language:
|
English |
Journal:
|
Aplikace matematiky |
ISSN:
|
0373-6725 |
Volume:
|
19 |
Issue:
|
4 |
Year:
|
1974 |
Pages:
|
246-252 |
Summary lang:
|
English |
Summary lang:
|
Czech |
. |
Category:
|
math |
. |
Summary:
|
Let us have a $r \times c$ contingency table with positive frequencies. The interaction is derived which is statistically most significant. A direct proof is given that the test based on this most significant interaction is asymptotically equivalent with the common $\chi^2$-test (under the hypothesis of independence in the contingency table). () |
MSC:
|
62F05 |
MSC:
|
62G10 |
MSC:
|
62H99 |
idZBL:
|
Zbl 0314.62021 |
idMR:
|
MR0388619 |
DOI:
|
10.21136/AM.1974.103538 |
. |
Date available:
|
2008-05-20T17:59:15Z |
Last updated:
|
2020-07-28 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/103538 |
. |
Reference:
|
[1] Goodman L. A.: On Placketťs test for contingency table interactions.J. Roy. Statist. Soc. Ser. B 25 (1963), 179-188. MR 0175232 |
Reference:
|
[2] Goodman L. A.: Simple methods for analyzing three - factor interaction in contingency tables.J. Amer. Statist. Assoc. 59 (1964), 319-352. Zbl 0129.33101, MR 0163393, 10.1080/01621459.1964.10482163 |
Reference:
|
[3] Goodman L. A.: Interactions in multidimensional contingency tables.Ann. Math. Statist. 35 (1964), 632-646. Zbl 0136.40803, MR 0162317, 10.1214/aoms/1177703561 |
Reference:
|
[4] Goodman L. A.: Simultaneous confidence limits for cross - product ratios in contingency tables.J. Roy. Statist. Soc. Ser. B 26 (1964), 86-102. Zbl 0129.32304, MR 0175264 |
Reference:
|
[5] Rao C. R.: Linear statistical inference and its applications.Wiley, New York 1965. Zbl 0137.36203, MR 0221616 |
. |