[1] Esquivel-Avila, J.:
Remarks on the qualitative behavior of the undamped Klein-Gordon equation. Math. Meth. Appl. Sci. (2017) 9 pp., DOI: 10.1002/mma.4598.
DOI 10.1002/mma.4598 |
MR 3745359
[2] Esquivel-Avila, J.:
Nonexistence of global solutions of abstract wave equations with high energies. J. of Inequalities and Applications, 2017:268 (2017) 14 pp., DOI 10.1186/s13660017-1546-1.
DOI 10.1186/s13660-017-1546-1 |
MR 3716687
[3] Ball, J.:
Finite blow up in nonlinear problems. in Nonlinear Evolution Equations, M. G. Crandall Editor, Academic Press, 1978, pp. 189-205.
MR 0513819
[5] Willem, M.:
Minimax Theorems. Progress in Nonlinear Differential Equations and Applications, Vol. 24, Birkh\"auser, 1996.
MR 1400007
[6] Payne, L. E., Sattinger, D. H.:
Saddle points and instability of nonlinear hyperbolic equations. Israel J. Math. 22 (1975) 273-303.
DOI 10.1007/BF02761595 |
MR 0402291
[7] Gazzola, F., Squassina, M.:
Global solutions and finite time blow up for damped semilinear wave equations. Ann. Inst. H. Poincaré Anal. Non Linéaire 23 (2006) 185-207.
MR 2201151
[9] Wang, Y.:
A sufficient condition for finite time blow up of the nonlinear Klein-Gordon equations with arbitrary positive initial energy. Proc. Amer. Math. Soc. 136 (2008) 3477-3482.
DOI 10.1090/S0002-9939-08-09514-2 |
MR 2415031
[12] Dimova, M., Kolkovska, N., Kutev, N.:
Revised concavity method and application to Klein-Gordon equation. Filomat 30 (2016) 831-839.
DOI 10.2298/FIL1603831D |
MR 3498681
[13] Alinhac, S.:
Blow up for nonlinear hyperbolic equations. Progress in Nonlinear Differential Equations and Applications 17, Birkh\"auser, 1995.
MR 1339762
[14] Levine, H. A.:
Instability and nonexistence of global solutions to nonlinear wave equations of the form $P u_{tt} = −Au + \Cal F (u)$. Trans. Am. Math. Soc. 192 (1974) 1-21.
MR 0344697
[15] Wang, S., Xuek, H.:
Global solution for a generalized Boussinesq equation. Appl. Math. Comput. 204 (2008) 130-136.
MR 2458348
[16] Xu, R., Liu, Y.:
Global existence and nonexistence of solution for Cauchy problem of multidimensional double dispersion equations. J. Math. Anal. Appl. 359 (2009) 739-751.
DOI 10.1016/j.jmaa.2009.06.034 |
MR 2546791
[17] Kutev, N., Kolkovska, N., Dimova, M.:
Nonexistence of global solutions to new ordinary differential inequality and applications to nonlinear dispersive equations. Math. Meth. Appl. Sci.39 (2016) 2287-2297.
DOI 10.1002/mma.3639 |
MR 3510159
[18] Kutev, N., Kolkovska, N., Dimova, M.:
Finite time blow up of the solutions to Boussinesq equation with linear restoring force and arbitrary positive energy. Acta Math. Scientia 36B (2016)881-890.
MR 3479262