[1] Eymard, R., Handlovičová, A., Mikula, K.:
Study of a finite volume scheme for regularised mean curvature flow level set equation. IMA J. on Numerical Analysis, Vol. 31, 813-846, 2011.
DOI 10.1093/imanum/drq025 |
MR 2832781
[2] Osher, S., A., J. Sethian:
Fronts propagating with curvature-dependent speed: Algorithms basedon Hamilton-Jacobi formulations. J. Comput. Phys., 79(1):12-49, 1988.
MR 0965860
[3] Mikula, K., Sarti, A., Sgallarri, A.:
Co-volume method for Riemannian mean curvature flow in subjective surfaces multiscale segmentation. Computing and Visualization in Science, Vol. 9, No. 1, 23-31, 2006.
DOI 10.1007/s00791-006-0014-0 |
MR 2214835
[4] Mikula, K., Sarti, A., Sgallari, F.: Co-volume level set method in subjective surface based medicalimage segmentation. in: Handbook of Medical Image Analysis: Segmentation and Registration Models (J.Suri et al., Eds.), Springer, New York, 583-626, 2005.
[5] Handlovičová, A., Tibenský, M.:
Convergence of the numerical scheme for regularised Riemannian mean curvature flow equation. submitted to Tatra Mountains Mathematical Publications, 2017.
MR 3939443
[6] Mikula, K., Ramarosy, N.:
Semi-implicit finite volume scheme for solving nonlinear diffusion equations in image processing. Numerische Mathematik 89, No. 3, 561-590, 2001.
DOI 10.1007/PL00005479 |
MR 1864431
[7] Tibenský, M.: Využitie metód založených na level set rovnici v spracovaní obrazu. Faculty of Mathematics, Physics and Informatics, Comenius University, 2016.
[8] Droniou, J., Nataraj, N.:
Improved $L^2$ estimate for gradient schemes, and super-convergence of the TPFA finite volume scheme. IMA Journal of Numerical Analysis 2017, 2016.
MR 3829161