[1] Attouch, H.:
Variational Convergence for Functions and Operators. Applicable Mathematics Series. Pitman (Advanced Publishing Program), Boston, MA, 1984.
MR 0773850
[2] Barbu, V.:
Nonlinear Differential Equations of Monotone Types in Banach Spaces. Springer Monographs in Mathematics. Springer, New York, 2010.
MR 2582280
[3] Brézis, H.:
Opérateurs Maximaux Monotones et Semi-groupes de Contractions dans les Espaces de Hilbert. North-Holland Publishing Co., Amsterdam-London; American Elsevier Publishing Co., Inc., New York, 1973. North-Holland Mathematics Studies, No. 5. Notas de Matemática (50).
MR 0348562
[4] Colli, P., Gilardi, G., Nakayashiki, R., Shirakawa, K.:
A class of quasi-linear Allen–Cahn type equations with dynamic boundary conditions. Nonlinear Anal., 158:32–59, 2017.
DOI 10.1016/j.na.2017.03.020 |
MR 3661429
[5] Giga, Y., Kashima, Y., Yamazaki, N.:
Local solvability of a constrained gradient system of total variation. Abstr. Appl. Anal., (8):651–682, 2004.
MR 2096945
[6] Ito, A., Yamazaki, N., Kenmochi, N.:
Attractors of nonlinear evolution systems generated by time-dependent subdifferentials in Hilbert spaces. Discrete Contin. Dynam. Systems, (Added Volume I):327–349, 1998. Dynamical systems and differential equations, Vol. I (Springfield, MO, 1996).
MR 1720614
[7] Kenmochi, N.:
Solvability of nonlinear evolution equations with time-dependent constraints and applications. Bull. Fac. Education, Chiba Univ.
http://ci.nii.ac.jp/naid/110004715232,30:1–87, 1981.
[10] Nakayashiki, R., Shirakawa, K.:
Weak formulation for singular diffusion equations with dynamic boundary condition. Springer INdAM Series. to appear, 2017.
MR 3751650
[11] Savaré, G., Visintin, A.:
Variational convergence of nonlinear diffusion equations: applications to concentrated capacity problems with change of phase. Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl., 8(1):49–89, 1997.
MR 1484545