[1] Abid, I., Dammak, M., Douchich, I.:
Stable solutions and bifurcation problem for asymptotically linear Helmholtz equations. Nonlinear Funct. Anal. Appl. 21 (2016), 15-31.
Zbl 1353.35130
[3] Alnaser, L. A., Dammak, M.:
Biharmonic problem with indefinite asymptotically linear nonlinearity. Int. J. Math. Comput. Sci. 16 (2021), 1355-1370.
MR 4294409 |
Zbl 1473.35176
[6] Cerami, G.:
An existence criterion for the critical points on unbounded manifolds. Ist. Lombardo Accad. Sci. Lett., Rend., Sez. A 112 (1978), 332-336 Italian.
MR 0581298 |
Zbl 0436.58006
[11] Dammak, M., Jaidane, R., Jerbi, C.:
Positive solutions for an asymptotically linear biharmonic problems. Nonlinear Funct. Anal. Appl. 22 (2017), 59-78.
Zbl 1368.35053
[12] El-Abed, A., Ali, A. A. B., Dammak, M.:
Schrödinger equation with asymptotically linear nonlinearities. Filomat 36 (2022), 629-639.
DOI 10.2298/FIL2202629E |
MR 4394295
[14] Lian, W., Rădulescu, V. D., Xu, R., Yang, Y., Zhao, N.:
Global well-posedness for a class of fourth-order nonlinear strongly damped wave equations. Adv. Calc. Var. 14 (2021), 589-611.
DOI 10.1515/acv-2019-0039 |
MR 4319045 |
Zbl 1476.35048
[16] Martel, Y.:
Uniqueness of weak extremal solutions of nonlinear elliptic problems. Houston J. Math. 23 (1997), 161-168.
MR 1688823 |
Zbl 0884.35037
[17] Mironescu, P., Rădulescu, V. D.:
A bifurcation problem associated to a convex, asymtotically linear function. C. R. Acad. Sci., Paris, Sér. I 316 (1993), 667-672.
MR 1214413 |
Zbl 0799.35025
[20] Rabinowitz, P. H.:
Minimax Methods in Critical Point Theory with Applications to Differential Equations. Regional Conference Series in Mathematics 65. AMS, Providence (1986).
DOI 10.1090/cbms/065 |
MR 0845785 |
Zbl 0609.58002
[22] Sâanouni, S., Trabelsi, N.:
Bifurcation for elliptic forth-order problems with quasilinear source term. Electronic J. Differ. Equ. 92 (2016), Article ID 92, 16 pages.
MR 3489976 |
Zbl 1342.35036
[26] Zahed, H.:
Existence investigation of a fourth order semi-linear weighted problem. Int. J. Math. Comput. Sci. 16 (2021), 687-704.
MR 4195463 |
Zbl 1455.35106
[27] Zahed, H., Alnaser, L. A.:
Elliptic weighted problem with indefinite asymptotically linear nonlinearity. J. Math. Stat. 17 (2021), 13-21.
DOI 10.3844/jmssp.2021.13.21