[2] Cerami, G.:
An existence criterion for the critical points on unbounded manifolds. Ist. Lombardo Accad. Sci. Lett., Rend., Sez. A 112 (1978), 332-336 Italian.
MR 0581298 |
Zbl 0436.58006
[6] Fei, G.:
On periodic solutions of superquadratic Hamiltonian systems. Electron. J. Differ. Equ. 2002 (2002), Article ID 8, 12 pages.
MR 1884977 |
Zbl 0999.37039
[9] Lian, H., Wang, D., Bai, Z., Agarwal, R. P.:
Periodic and subharmonic solutions for a class of second-order $p$-Laplacian Hamiltonian systems. Bound. Value Probl. 2014 (2014), Article ID 260, 15 pages.
DOI 10.1186/s13661-014-0260-x |
MR 3294474 |
Zbl 1320.34065
[10] Liu, C., Zhong, Y.:
Infinitely many periodic solutions for ordinary $p(t)$-Laplacian differential systems. Electron Res. Arch. 30 (2022), 1653-1667.
DOI 10.3934/era.2022083 |
MR 4401210
[16] Rabinowitz, P.:
Minimax Methods in Critical Point Theory with Applications to Differential Equations. Regional Conference Series in Mathematics 65. AMS, Providence (1986).
DOI 10.1090/cbms/065 |
MR 0845785 |
Zbl 0609.58002