Previous |  Up |  Next

Article

Keywords:
power integral basis; theorem of Ore; prime ideal factorization; common index divisor
Summary:
Let $K = \mathbb {Q} (\alpha ) $ be a pure number field generated by a complex root $\alpha $ of a monic irreducible polynomial $ F(x) = x^{2^r\cdot 3^k\cdot 7^s} -m \in \mathbb{Z}[x]$, where $r$, $k$, $s$ are three positive natural integers. The purpose of this paper is to study the monogenity of $K$. Our results are illustrated by some examples.
References:
[1] Ahmad, S., Nakahara, T., Hameed, A.: On certain pure sextic fields related to a problem of Hasse. Int. J. Algebra Comput. 26 (2016), 577-583. DOI 10.1142/S0218196716500259 | MR 3506350 | Zbl 1404.11124
[2] Ahmad, S., Nakahara, T., Husnine, S. M.: Power integral bases for certain pure sextic fields. Int. J. Number Theory 10 (2014), 2257-2265. DOI 10.1142/S1793042114500778 | MR 3273484 | Zbl 1316.11094
[3] Yakkou, H. Ben, Chillali, A., Fadil, L. El: On power integral bases for certain pure number fields defined by $x^{2^r \cdot 5^s}-m$. Commun. Algebra 49 (2021), 2916-2926. DOI 10.1080/00927872.2021.1883642 | MR 4274858 | Zbl 1471.11260
[4] Bilu, Y., Gaál, I., Győry, K.: Index form equations in sextic fields: A hard computation. Acta Arith. 115 (2004), 85-96. DOI 10.4064/aa115-1-7 | MR 2102808 | Zbl 1064.11084
[5] Cohen, H.: A Course in Computational Algebraic Number Theory. Graduate Texts in Mathematics 138. Springer, Berlin (1993). DOI 10.1007/978-3-662-02945-9 | MR 1228206 | Zbl 0786.11071
[6] Dedekind, R.: Über den Zusammenhang zwischen der Theorie der Ideale und der Theorie der höheren Congruenzen. Abh. Akad. Wiss. Gött. 23 (1878), 3-38 German.
[7] Fadil, L. El: On power integral bases for certain pure number fields defined by $x^{3^r\cdot 7^s}-m$. Colloq. Math. 169 (2022), 307-317. DOI 10.4064/cm8574-6-2021 | MR 4443656 | Zbl 07558464
[8] Fadil, L. El, Yakkou, H. Ben, Didi, J.: On power integral bases for certain pure number fields defined by $x^{42}- m$. Bol. Soc. Mat. Mex., III. Ser. 27 (2021), Article ID 81, 10 pages. DOI 10.1007/s40590-021-00388-2 | MR 4322465 | Zbl 1478.11124
[9] Fadil, L. El, Montes, J., Nart, E.: Newton polygons and $p$-integral bases of quartic number fields. J. Algebra Appl. 11 (2012), Article ID 1250073, 33 pages. DOI 10.1142/S0219498812500739 | MR 2959422 | Zbl 1297.11134
[10] Fadil, L. El, Najim, A.: On power integral bases for certain pure number fields defined by $x^{2^u \cdot 3^v}-m$. Available at https://arxiv.org/abs/2106.01252 (2021), 12 pages. MR 4361576
[11] Gaál, I.: Diophantine Equations and Power Integral Bases: Theory and Algorithms. Birkhäuser, Cham (2019). DOI 10.1007/978-3-030-23865-0 | MR 3970246 | Zbl 1465.11090
[12] Gaál, I., Győry, K.: Index form equations in quintic fields. Acta Arith. 89 (1999), 379-396. DOI 10.4064/aa-89-4-379-396 | MR 1703860 | Zbl 0930.11091
[13] Gaál, I., Remete, L.: Binomial Thue equations and power integral bases in pure quartic fields. JP J. Algebra Number Theory Appl. 32 (2014), 49-61. Zbl 1295.11120
[14] Gaál, I., Remete, L.: Integral bases and monogenity of pure fields. J. Number Theory 173 (2017), 129-146. DOI 10.1016/j.jnt.2016.09.009 | MR 3581912 | Zbl 1419.11118
[15] Gaál, I., Remete, L.: Non-monogenity in a family of octic fields. Rocky Mt. J. Math. 47 (2017), 817-824. DOI 10.1216/RMJ-2017-47-3-817 | MR 3682150 | Zbl 1381.11102
[16] Gassert, T. A.: A note on the monogeneity of power maps. Albanian J. Math. 11 (2017), 3-12. DOI 10.51286/albjm/1495919797 | MR 3659215 | Zbl 1392.11082
[17] Guàrdia, J., Montes, J., Nart, E.: Newton polygons of higher order in algebraic number theory. Trans. Am. Math. Soc. 364 (2012), 361-416. DOI 10.1090/S0002-9947-2011-05442-5 | MR 2833586 | Zbl 1252.11091
[18] Hameed, A., Nakahara, T.: Integral bases and relative monogenity of pure octic fields. Bull. Math. Soc. Sci. Math. Roum., Nouv. Sér. 58 (2015), 419-433. MR 3443598 | Zbl 1363.11094
[19] Hasse, H.: Zahlentheorie. Akademie-Verlag, Berlin (1963), German. MR 0153659 | Zbl 1038.11500
[20] Jakhar, A., Khanduja, S., Sangwan, N.: On the discriminant of pure number fields. Colloq. Math. 167 (2022), 149-157. DOI 10.4064/cm8257-11-2020 | MR 4339462 | Zbl 1491.11099
[21] Narkiewicz, W.: Elementary and Analytic Theory of Algebraic Numbers. Springer Monographs in Mathematics. Springer, Berlin (2004). DOI 10.1007/978-3-662-07001-7 | MR 2078267 | Zbl 1159.11039
[22] Ore, "O.: Newtonsche Polygone in der Theorie der algebraischen Körper. Math. Ann. 99 (1928), 84-117 German \99999JFM99999 54.0191.02. DOI 10.1007/BF01459087 | MR 1512440
[23] Pethő, A., Pohst, M. E.: On the indices of multiquadratic number fields. Acta. Arith. 153 (2012), 393-414. DOI 10.4064/aa153-4-4 | MR 2925379 | Zbl 1255.11052
Partner of
EuDML logo