[1] Aşıcı, E., Mesiar, R.:
On the construction of uninorms on bounded lattices. Fuzzy Sets Syst. 408 (2021), 65-85.
DOI |
MR 4210984
[2] Birkhoff, G.:
Lattice theory. (Third Edition.). Amer. Math. Soc., Rhode Island 1967.
MR 0227053
[3] Baczyński, M., Jayaram, B.:
Fuzzy Implications. Springer, Berlin 2008.
Zbl 1293.03012
[4] Bodjanova, S., Kalina, M.: Construction of uninorms on bounded lattices. In: IEEE 12th International Symposium on Intelligent Systems and Informatics, SISY 2014, Subotica.
[5] Çaylı, G. D., Karaçal, F., Mesiar, R.:
On a new class of uninorms on bounded lattices. Inf. Sci. 367 (2016), 221-231.
DOI |
MR 3684677
[6] Çaylı, G. D., Karaçal, F.:
Construction of uninorms on bounded lattices. Kybernetika 53 (2017), 3, 394-417.
DOI |
MR 3684677
[7] al., G. D. Çaylı et:
Notes on locally internal uninorm on bounded lattices. Kybernetika 53 (2017), 5, 911-921.
DOI |
MR 3750111
[8] Çaylı, G. D.:
On a new class of $t$-norms and $t$-conorms on bounded lattices. Fuzzy Sets Syst. 332 (2018), 129-143.
DOI |
MR 3732255
[9] Çaylı, G.D.:
On the structure of uninorms on bounded lattices. Fuzzy Sets Syst. 357 (2019), 2-26.
DOI |
MR 3913056
[10] Çaylı, G. D.:
Alternative approaches for generating uninorms on bounded lattices. Inf. Sci. 488 (2019), 111-139.
DOI |
MR 3924420
[11] Çaylı, G. D.:
New methods to construct uninorms on bounded lattices. Int. J. Approx. Reason. 115 (2019), 254-264.
DOI |
MR 4018632
[12] Çaylı, G. D.:
Some methods to obtain $t$-norms and $t$-conorms on bounded lattices. Kybernetika 55 (2019), 2, 273-294.
DOI |
MR 4014587
[13] Çaylı, G. D.:
Uninorms on bounded lattices with the underlying $t$-norms and $t$-conorms. Fuzzy Sets Syst. 395 (2020), 107-129.
DOI |
MR 4109064
[14] Çaylı, G. D.:
New construction approaches of uninorms on bounded lattices. Int. J. Gen. Syst. 50 (2021), 139-158.
DOI |
MR 4222196
[15] Çaylı, G. D.:
A characterization of uninorms on bounded lattices by means of triangular norms and triangular conorms. Int. J. Gen. Syst. 47 (2018), 772-793.
DOI |
MR 3867053
[16] Çaylı, G. D., Ertuğrul, Ü., Karaçal, F.:
Some further construction methods for uninorms on bounded lattices. Int. J. Gen. Syst. 52 (2023), 4, 414-442.
DOI |
MR 4589126
[17] Baets, B. De, Fodor, J.:
Van Melle's combining function in MYCIN is a representable uninorm: An alternative proof. Fuzzy Sets Syst. 104 (1999), 133-136.
DOI |
MR 1685816 |
Zbl 0928.03060
[18] Baets, B. De, Mesiar, R.:
Triangular norms on product lattices. Fuzzy Sets Syst. 104 (1999), 61-75.
DOI |
MR 1685810 |
Zbl 0935.03060
[19] Dan, Y. X., Hu, B. Q., Qiao, J. S.:
New constructions of uninorms on bounded lattices. Int. J. Approx. Reason. 110 (2019), 185-209.
DOI |
MR 3947797
[20] Dan, Y. X., Hu, B. Q.:
A new structure for uninorms on bounded lattices. Fuzzy Sets Syst. 386 (2020), 77-94.
DOI |
MR 4073387
[21] Ertuğrul, Ü., Kesicioğlu, M. N., Karaçal, F.:
Some new construction methods for $t$-norms on bounded lattices. Int. J. Gen. Syst. 48 (2019), 7, 775-791.
DOI |
MR 4001869
[22] Ertuğrul, Ü., Yeşilyurt, M.:
Ordinal sums of triangular norms on bounded lattices. Inf. Sci. 517 (2020), 198-216.
DOI |
MR 4050654
[23] Ertuğrul, Ü., Karaçal, F., Mesiar, R.:
Modified ordinal sums of triangular norms and triangular conorms on bounded lattices. Int. J. Intell. Syst. 30 (2015), 807-817.
DOI
[24] al., M. Grabisch et: Aggregation Functions. Cambridge University Press, 2009.
[25] al., M. Grabisch et:
Aggregation functions: construction methods, conjunctive, disjunctive and mixed classes. Inf. Sci. 181 (2011), 23-43.
DOI |
MR 2737458
[26] Höhle, U.:
Commutative, residuated l-monoids. In: Non-Classical Logics and Their Applications to Fuzzy Subsets: A Handbook on the Mathematical Foundations of Fuzzy Set Theory (U. Höhle and E. P. Klement, eds.), Kluwer, Dordrecht 1995.
MR 1345641
[27] Hua, X. J., Zhang, H. P., Ouyang, Y.:
Note on "Construction of uninorms on bounded lattices". Kybernetika 57 (2021), 2, 372-382.
DOI |
MR 4273581
[28] He, P., Wang, X. P.:
Constructing uninorms on bounded lattices by using additive generators. Int. J. Approx. Reason. 136 (2021), 1-13.
DOI |
MR 4270087
[29] Hua, X. J., Ji, W.:
Uninorms on bounded lattices constructed by $t$-norms and $t$-subconorms. Fuzzy Sets Syst. 427 (2022), 109-131.
DOI |
MR 4343692
[30] Jenei, S., Baets, B. De:
On the direct decomposability of $t$-norms on product lattices. Fuzzy Sets Syst. 139 (2003), 699-707.
DOI |
MR 2015162
[31] Ji, W.:
Constructions of uninorms on bounded lattices by means of $t$-subnorms and $t$-subconorms. Fuzzy Sets Syst. 403 (2021), 38-55.
DOI |
MR 4174507
[32] Karaçal, F., Mesiar, R.:
Uninorms on bounded lattices. Fuzzy Sets Syst. 261 (2015), 33-43.
DOI |
MR 3291484
[33] Karaçal, F., Ertuğrul, Ü., Mesiar, R.:
Characterization of uninorms on bounded lattices. Fuzzy Sets Syst. 308 (2017), 54-71.
DOI |
MR 3579154
[34] Karaçal, F., Ertuğrul, Ü., Kesicioğlu, M.:
An extension method for $t$-norms on subintervals to $t$-norms on bounded lattices. Kybernetika 55 (2019), 6, 976-993.
DOI |
MR 4077140
[35] Karaçal, F., Kesicioğlu, M., Ertuğrul, Ü.:
Generalized convex combination of triangular norms on bounded lattices. Int. J. Gen. Syst. 49 (2020), 3, 277-301.
DOI |
MR 4085740
[36] Liang, X., Pedrycz, W.:
Logic-based fuzzy networks: a study in system modeling with triangular norms and uninorms. Fuzzy Sets Syst. 160 (2009), 3475-3502.
DOI |
MR 2563300
[38] Medina, J.:
Characterizing when an ordinal sum of $t$-norms is a $t$-norm on bounded lattices. Fuzzy Sets Syst. 202 (2012), 75-88.
DOI |
MR 2934787
[39] Ouyang, Y., Zhang, H. P.:
Constructing uninorms via closure operators on a bounded lattice. Fuzzy Sets Syst. 395 (2020), 93-106.
DOI |
MR 4109063
[40] Pedrycz, W., Hirota, K.:
Uninorm-based logic neurons as adaptive and interpretable processing constructs. Soft Comput. 11 (2007), 1, 41-52.
DOI
[43] Schweizer, B., Sklar, A.:
Associative functions and statistical triangular inequalities. Publ. Math. 8 (1961), 169-186.
MR 0132939
[44] Saminger, S.:
On ordinal sums of triangular norms on bounded lattices. Fuzzy Sets Syst. 157 (2006), 1403-1416.
DOI |
MR 2226983 |
Zbl 1099.06004
[45] Saminger, S., Klement, E., Mesiar, R.:
On extension of triangular norms on bounded lattices. Indag. Math. 19 (2008), 1, 135-150.
DOI |
MR 2466398
[46] Wang, Z.:
TL-filters of integral residuated $l$-monoids. Inf. Sci. 177 (2007), 887-896.
DOI |
MR 2287146
[47] Xie, A. F., Li, S. J.:
On constructing the largest and smallest uninorms on bounded lattices. Fuzzy Sets Syst. 386 (2020), 95-104.
DOI |
MR 4073391
[48] Xiu, Z. Y., Zheng, X.:
New construction methods of uninorms on bounded lattices via uninorms. Fuzzy Sets Syst. 465 (2023), 108535.
DOI |
MR 4594058
[49] Xiu, Z. Y., Jiang, Y. X.:
New structures for uninorms on bounded lattices. J. Intell. Fuzzy Syst. 45 (2023), 2, 2019-2030.
DOI |
MR 4388021
[52] al., H. P. Zhang et:
A characterization of the classes Umin and Umax of uninorms on a bounded lattice. Fuzzy Sets Syst. 423 (2021), 107-121.
DOI |
MR 4310515
[53] Zimmermann, H. J.:
Fuzzy Set Theory and Its Applications. (Fourth Edition.). Kluwer, Aachen 2001.
MR 1882395