Previous |  Up |  Next

Article

Keywords:
bounded lattices; $t$-norms; $t$-conorms; uninorms
Summary:
In this paper, on a bounded lattice $L$, we give a new approach to construct uninorms via a given uninorm $U^{*}$ on the subinterval $[0,a]$ (or $[b,1]$) of $L$ under additional constraint conditions on $L$ and $U^{*}$. This approach makes our methods generalize some known construction methods for uninorms in the literature. Meanwhile, some illustrative examples for the construction of uninorms on bounded lattices are provided.
References:
[1] Aşıcı, E., Mesiar, R.: On the construction of uninorms on bounded lattices. Fuzzy Sets Syst. 408 (2021), 65-85. DOI  | MR 4210984
[2] Birkhoff, G.: Lattice theory. (Third Edition.). Amer. Math. Soc., Rhode Island 1967. MR 0227053
[3] Baczyński, M., Jayaram, B.: Fuzzy Implications. Springer, Berlin 2008. Zbl 1293.03012
[4] Bodjanova, S., Kalina, M.: Construction of uninorms on bounded lattices. In: IEEE 12th International Symposium on Intelligent Systems and Informatics, SISY 2014, Subotica.
[5] Çaylı, G. D., Karaçal, F., Mesiar, R.: On a new class of uninorms on bounded lattices. Inf. Sci. 367 (2016), 221-231. DOI  | MR 3684677
[6] Çaylı, G. D., Karaçal, F.: Construction of uninorms on bounded lattices. Kybernetika 53 (2017), 3, 394-417. DOI  | MR 3684677
[7] al., G. D. Çaylı et: Notes on locally internal uninorm on bounded lattices. Kybernetika 53 (2017), 5, 911-921. DOI  | MR 3750111
[8] Çaylı, G. D.: On a new class of $t$-norms and $t$-conorms on bounded lattices. Fuzzy Sets Syst. 332 (2018), 129-143. DOI  | MR 3732255
[9] Çaylı, G.D.: On the structure of uninorms on bounded lattices. Fuzzy Sets Syst. 357 (2019), 2-26. DOI  | MR 3913056
[10] Çaylı, G. D.: Alternative approaches for generating uninorms on bounded lattices. Inf. Sci. 488 (2019), 111-139. DOI  | MR 3924420
[11] Çaylı, G. D.: New methods to construct uninorms on bounded lattices. Int. J. Approx. Reason. 115 (2019), 254-264. DOI  | MR 4018632
[12] Çaylı, G. D.: Some methods to obtain $t$-norms and $t$-conorms on bounded lattices. Kybernetika 55 (2019), 2, 273-294. DOI  | MR 4014587
[13] Çaylı, G. D.: Uninorms on bounded lattices with the underlying $t$-norms and $t$-conorms. Fuzzy Sets Syst. 395 (2020), 107-129. DOI  | MR 4109064
[14] Çaylı, G. D.: New construction approaches of uninorms on bounded lattices. Int. J. Gen. Syst. 50 (2021), 139-158. DOI  | MR 4222196
[15] Çaylı, G. D.: A characterization of uninorms on bounded lattices by means of triangular norms and triangular conorms. Int. J. Gen. Syst. 47 (2018), 772-793. DOI  | MR 3867053
[16] Çaylı, G. D., Ertuğrul, Ü., Karaçal, F.: Some further construction methods for uninorms on bounded lattices. Int. J. Gen. Syst. 52 (2023), 4, 414-442. DOI  | MR 4589126
[17] Baets, B. De, Fodor, J.: Van Melle's combining function in MYCIN is a representable uninorm: An alternative proof. Fuzzy Sets Syst. 104 (1999), 133-136. DOI  | MR 1685816 | Zbl 0928.03060
[18] Baets, B. De, Mesiar, R.: Triangular norms on product lattices. Fuzzy Sets Syst. 104 (1999), 61-75. DOI  | MR 1685810 | Zbl 0935.03060
[19] Dan, Y. X., Hu, B. Q., Qiao, J. S.: New constructions of uninorms on bounded lattices. Int. J. Approx. Reason. 110 (2019), 185-209. DOI  | MR 3947797
[20] Dan, Y. X., Hu, B. Q.: A new structure for uninorms on bounded lattices. Fuzzy Sets Syst. 386 (2020), 77-94. DOI  | MR 4073387
[21] Ertuğrul, Ü., Kesicioğlu, M. N., Karaçal, F.: Some new construction methods for $t$-norms on bounded lattices. Int. J. Gen. Syst. 48 (2019), 7, 775-791. DOI  | MR 4001869
[22] Ertuğrul, Ü., Yeşilyurt, M.: Ordinal sums of triangular norms on bounded lattices. Inf. Sci. 517 (2020), 198-216. DOI  | MR 4050654
[23] Ertuğrul, Ü., Karaçal, F., Mesiar, R.: Modified ordinal sums of triangular norms and triangular conorms on bounded lattices. Int. J. Intell. Syst. 30 (2015), 807-817. DOI 
[24] al., M. Grabisch et: Aggregation Functions. Cambridge University Press, 2009.
[25] al., M. Grabisch et: Aggregation functions: construction methods, conjunctive, disjunctive and mixed classes. Inf. Sci. 181 (2011), 23-43. DOI  | MR 2737458
[26] Höhle, U.: Commutative, residuated l-monoids. In: Non-Classical Logics and Their Applications to Fuzzy Subsets: A Handbook on the Mathematical Foundations of Fuzzy Set Theory (U. Höhle and E. P. Klement, eds.), Kluwer, Dordrecht 1995. MR 1345641
[27] Hua, X. J., Zhang, H. P., Ouyang, Y.: Note on "Construction of uninorms on bounded lattices". Kybernetika 57 (2021), 2, 372-382. DOI  | MR 4273581
[28] He, P., Wang, X. P.: Constructing uninorms on bounded lattices by using additive generators. Int. J. Approx. Reason. 136 (2021), 1-13. DOI  | MR 4270087
[29] Hua, X. J., Ji, W.: Uninorms on bounded lattices constructed by $t$-norms and $t$-subconorms. Fuzzy Sets Syst. 427 (2022), 109-131. DOI  | MR 4343692
[30] Jenei, S., Baets, B. De: On the direct decomposability of $t$-norms on product lattices. Fuzzy Sets Syst. 139 (2003), 699-707. DOI  | MR 2015162
[31] Ji, W.: Constructions of uninorms on bounded lattices by means of $t$-subnorms and $t$-subconorms. Fuzzy Sets Syst. 403 (2021), 38-55. DOI  | MR 4174507
[32] Karaçal, F., Mesiar, R.: Uninorms on bounded lattices. Fuzzy Sets Syst. 261 (2015), 33-43. DOI  | MR 3291484
[33] Karaçal, F., Ertuğrul, Ü., Mesiar, R.: Characterization of uninorms on bounded lattices. Fuzzy Sets Syst. 308 (2017), 54-71. DOI  | MR 3579154
[34] Karaçal, F., Ertuğrul, Ü., Kesicioğlu, M.: An extension method for $t$-norms on subintervals to $t$-norms on bounded lattices. Kybernetika 55 (2019), 6, 976-993. DOI  | MR 4077140
[35] Karaçal, F., Kesicioğlu, M., Ertuğrul, Ü.: Generalized convex combination of triangular norms on bounded lattices. Int. J. Gen. Syst. 49 (2020), 3, 277-301. DOI  | MR 4085740
[36] Liang, X., Pedrycz, W.: Logic-based fuzzy networks: a study in system modeling with triangular norms and uninorms. Fuzzy Sets Syst. 160 (2009), 3475-3502. DOI  | MR 2563300
[37] Menger, K.: Statistical metrics. Proc. Natl. Acad. Sci. USA 8 (1942), 535-537. DOI 10.1073/pnas.28.12.535 | MR 0007576 | Zbl 0063.03886
[38] Medina, J.: Characterizing when an ordinal sum of $t$-norms is a $t$-norm on bounded lattices. Fuzzy Sets Syst. 202 (2012), 75-88. DOI  | MR 2934787
[39] Ouyang, Y., Zhang, H. P.: Constructing uninorms via closure operators on a bounded lattice. Fuzzy Sets Syst. 395 (2020), 93-106. DOI  | MR 4109063
[40] Pedrycz, W., Hirota, K.: Uninorm-based logic neurons as adaptive and interpretable processing constructs. Soft Comput. 11 (2007), 1, 41-52. DOI 
[41] Schweizer, B., Sklar, A.: Statistical metric spaces. Pacific J. Math. 10 (1960), 313-334. DOI  | MR 0115153 | Zbl 0136.39301
[42] Schweizer, B., Sklar, A.: Probabilistic Metric Spaces. North-Holland, New York 1983. MR 0790314 | Zbl 0546.60010
[43] Schweizer, B., Sklar, A.: Associative functions and statistical triangular inequalities. Publ. Math. 8 (1961), 169-186. MR 0132939
[44] Saminger, S.: On ordinal sums of triangular norms on bounded lattices. Fuzzy Sets Syst. 157 (2006), 1403-1416. DOI  | MR 2226983 | Zbl 1099.06004
[45] Saminger, S., Klement, E., Mesiar, R.: On extension of triangular norms on bounded lattices. Indag. Math. 19 (2008), 1, 135-150. DOI  | MR 2466398
[46] Wang, Z.: TL-filters of integral residuated $l$-monoids. Inf. Sci. 177 (2007), 887-896. DOI  | MR 2287146
[47] Xie, A. F., Li, S. J.: On constructing the largest and smallest uninorms on bounded lattices. Fuzzy Sets Syst. 386 (2020), 95-104. DOI  | MR 4073391
[48] Xiu, Z. Y., Zheng, X.: New construction methods of uninorms on bounded lattices via uninorms. Fuzzy Sets Syst. 465 (2023), 108535. DOI  | MR 4594058
[49] Xiu, Z. Y., Jiang, Y. X.: New structures for uninorms on bounded lattices. J. Intell. Fuzzy Syst. 45 (2023), 2, 2019-2030. DOI  | MR 4388021
[50] Yager, R. R., Rybalov, A.: Uninorm aggregation operators. Fuzzy Sets Syst. 80 (1996), 111-120. DOI  | MR 1389951 | Zbl 0871.04007
[51] Zhao, B., Wu, T.: Some further results about uninorms on bounded lattices. Int. J. Approx. Reason. 130 (2021), 22-49. DOI 10.1016/j.ijar.2020.12.008 | MR 4188974
[52] al., H. P. Zhang et: A characterization of the classes Umin and Umax of uninorms on a bounded lattice. Fuzzy Sets Syst. 423 (2021), 107-121. DOI  | MR 4310515
[53] Zimmermann, H. J.: Fuzzy Set Theory and Its Applications. (Fourth Edition.). Kluwer, Aachen 2001. MR 1882395
Partner of
EuDML logo