Previous |  Up |  Next

Article

Title: New equivalent conditions for Hardy-type inequalities (English)
Author: Kufner, Alois
Author: Kuliev, Komil
Author: Kulieva, Gulchehra
Author: Eshimova, Mohlaroyim
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 149
Issue: 1
Year: 2024
Pages: 57-73
Summary lang: English
.
Category: math
.
Summary: We consider a Hardy-type inequality with Oinarov's kernel in weighted Lebesgue spaces. We give new equivalent conditions for satisfying the inequality, and provide lower and upper estimates for its best constant. The findings are crucial in the study of oscillation and non-oscillation properties of differential equation solutions, as well as spectral properties. (English)
Keyword: integral operator
Keyword: norm
Keyword: weight function
Keyword: Lebesgue space
Keyword: Hardy-type inequality
Keyword: kernel
MSC: 26D10
MSC: 26D15
MSC: 47B01
MSC: 47B34
MSC: 47B37
MSC: 47B93
MSC: 47G10
idZBL: Zbl 07830544
idMR: MR4715557
DOI: 10.21136/MB.2023.0088-22
.
Date available: 2024-03-13T10:19:00Z
Last updated: 2024-12-13
Stable URL: http://hdl.handle.net/10338.dmlcz/152293
.
Reference: [1] Bloom, S., Kerman, R.: Weighted norm inequalities for operators of Hardy type.Proc. Am. Math. Soc. 113 (1991), 135-141. Zbl 0753.42010, MR 1059623, 10.1090/S0002-9939-1991-1059623-6
Reference: [2] Breadley, J. S.: Hardy inequalities with mixed norms.Can. Math. Bull. 21 (1978), 405-408. Zbl 0402.26006, MR 0523580, 10.4153/CMB-1978-071-7
Reference: [3] Drábek, P., Kuliev, K., Marletta, M.: Some criteria for discreteness of spectrum of half-linear fourth order Sturm-Liouville problem.NoDEA, Nonlinear Differ. Equ. Appl. 24 (2017), Article ID 11, 39 pages. Zbl 1383.34044, MR 3608754, 10.1007/s00030-017-0433-2
Reference: [4] Gogatishvili, A., Kufner, A., Persson, L.-E.: Some new scales of weight characterizations of the class $B_p$.Acta Math. Hung. 123 (2009), 365-377. Zbl 1199.26057, MR 2506756, 10.1007/s10474-009-8132-z
Reference: [5] Gogatishvili, A., Kufner, A., Persson, L.-E., Wedestig, A.: An equivalence theorem for integral conditions related to Hardy's inequality.Real Anal. Exch. 29 (2004), 867-880. Zbl 1070.26015, MR 2083821, 10.14321/realanalexch.29.2.0867
Reference: [6] Kalybay, A. A., Baiarystanov, A. O.: Exact estimate of norm of integral operator with Oinarov condition.Mat. Zh. 21 (2021), 6-14. Zbl 1488.26068
Reference: [7] Kokilashvili, V. M.: On Hardy's inequalities in weighted spaces.Soobshch. Akad. Nauk Gruzin. SSR 96 (1979), 37-40 Russian. Zbl 0434.26007, MR 0564755
Reference: [8] Kufner, A., Kuliev, K., Oinarov, R.: Some criteria for boundedness and compactness of the Hardy operator with some special kernels.J. Inequal. Appl. 2013 (2013), Article ID 310, 15 pages. Zbl 1290.26024, MR 3083528, 10.1186/1029-242X-2013-310
Reference: [9] Kufner, A., Kuliev, K., Persson, L.-E.: Some higher order Hardy inequalities.J. Inequal. Appl. 2012 (2012), Article ID 69, 14 pages. Zbl 1276.26048, MR 2931013, 10.1186/1029-242X-2012-69
Reference: [10] Kufner, A., Maligranda, L., Persson, L.-E.: The Hardy Inequality: About Its History and Some Related Results.Vydavatelský servis, Pilsen (2007). Zbl 1213.42001, MR 2351524
Reference: [11] Kufner, A., Persson, L.-E.: Weighted Inequalities of Hardy Type.World Scientific, Singapore (2003). Zbl 1065.26018, MR 1982932, 10.1142/5129
Reference: [12] Kufner, A., Persson, L.-E., Wedestig, A.: A study of some constants characterizing the weighted Hardy inequality.Banach Center Publ. 64 (2004), 135-146. Zbl 1052.26018, MR 2099465, 10.4064/bc64-0-11
Reference: [13] Kuliev, K., Kulieva, G., Eshimova, M.: On estimates for norm of an integral operator with Oinarov kernel.Uzb. Math. J. 65 (2021), 117-127. Zbl 07465549, MR 4378731, 10.29229/uzmj.2021-4-10
Reference: [14] Martin-Reyes, F. J., Sawyer, E.: Weighted inequalities for Riemann-Liouville fractional integrals of order one and greater.Proc. Am. Math. Soc. 106 (1989), 727-733. Zbl 0704.42018, MR 0965246, 10.1090/S0002-9939-1989-0965246-8
Reference: [15] Maz'ja, V. G.: Sobolev Spaces. Springer Series in Soviet Mathematics.Springer, Berlin (1979). Zbl 0692.46023, MR 0817985, 10.1007/978-3-662-09922-3
Reference: [16] Muckenhoupt, B.: Hardy's inequality with weights.Stud. Math. 44 (1972), 31-38. Zbl 0236.26015, MR 0311856, 10.4064/sm-44-1-31-38
Reference: [17] Oinarov, R.: Two-sided norm estimates for certain classes of integral operators.Proc. Steklov Inst. Math. 204 (1994), 205-214 translation from Tr. Mat. Inst. Steklova 204 1993 240-250. Zbl 0883.47048, MR 1320028
Reference: [18] Opic, B., Kufner, A.: Hardy-Type Inequalities.Pitman Research Notes in Mathematics 219. Longman Scientific & Technical, Harlow (1990). Zbl 0698.26007, MR 1069756
Reference: [19] Persson, L.-E., Stepanov, V. D.: Weighted integral inequalities with the geometric mean.Dokl. Math. 63 (2001), 201-202 translation from Dokl. Akad. Nauk, Ross. Akad. Nauk 377 2001 439-440. Zbl 1044.26014, MR 1862003
Reference: [20] Prokhorov, D. V.: On the boundedness and compactness of a class of integral operators.J. Lond. Math. Soc., II. Ser. 61 (2000), 617-628. Zbl 0956.47019, MR 1760684, 10.1112/S002461079900856X
Reference: [21] Prokhorov, D. V., Stepanov, V. D.: Weighted estimates for the Riemann-Liouville operators and applications.Proc. Steklov Inst. Math. 243 (2003), 278-301 translation from Tr. Mat. Inst. Steklova 243 2003 289-312. Zbl 1081.26004, MR 2054439
Reference: [22] Talenti, G.: Osservazioni sopra una classe di disuguaglianze.Rend. Sem. Mat. Fis. Milano 39 (1969), 171-185 Italian. Zbl 0218.26011, MR 0280661, 10.1007/BF02924135
Reference: [23] Tomaselli, G.: A class of inequalities.Boll. Unione Mat. Ital., IV. Ser. 2 (1969), 622-631. Zbl 0188.12103, MR 0255751
Reference: [24] Wedestig, A.: Weighted Inequalities of Hardy-Type and their Limiting Inequalities: Doctoral Thesis.Luleå University of Technology, Luleå (2003). MR 2044410
.

Files

Files Size Format View
MathBohem_149-2024-1_6.pdf 245.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo