Previous |  Up |  Next

Article

Title: On generalized bihyperbolic Mersenne numbers (English)
Author: Bród, Dorota
Author: Szynal-Liana, Anetta
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 149
Issue: 1
Year: 2024
Pages: 75-85
Summary lang: English
.
Category: math
.
Summary: In this paper, a new generalization of Mersenne bihyperbolic numbers is introduced. Some of the properties of presented numbers are given. A general bilinear index-reduction formula for the generalized bihyperbolic Mersenne numbers is obtained. This result implies the Catalan, Cassini, Vajda, d'Ocagne and Halton identities. Moreover, generating function and matrix generators for these numbers are presented. (English)
Keyword: Mersenne number
Keyword: hyperbolic number
Keyword: bihyperbolic number
Keyword: recurrence relation
MSC: 11B37
MSC: 11B39
idZBL: Zbl 07830545
idMR: MR4715558
DOI: 10.21136/MB.2023.0085-22
.
Date available: 2024-03-13T10:20:21Z
Last updated: 2024-12-13
Stable URL: http://hdl.handle.net/10338.dmlcz/152294
.
Reference: [1] Bilgin, M., Ersoy, S.: Algebraic properties of bihyperbolic numbers.Adv. Appl. Clifford Algebr. 30 (2020), Article ID 13, 17 pages. Zbl 1442.30049, MR 4054825, 10.1007/s00006-019-1036-2
Reference: [2] Catarino, P., Campos, H., Vasco, P.: On the Mersenne sequence.Ann. Math. Inform. 46 (2016), 37-53. Zbl 1374.11020, MR 3607003
Reference: [3] Catoni, F., Boccaletti, D., Cannata, R., Catoni, V., Nichelatti, E., Zampetti, P.: The Mathematics of Minkowski Space-Time: With an Introduction to Commutative Hypercomplex Numbers.Frontiers in Mathematics. Birkhäuser, Basel (2008). Zbl 1151.53001, MR 2411620, 10.1007/978-3-7643-8614-6
Reference: [4] Chelgham, M., Boussayoud, A.: On the $k$-Mersenne-Lucas numbers.Notes Number Theory Discrete Math. 27 (2021), 7-13. 10.7546/nntdm.2021.27.1.7-13
Reference: [5] Cockle, J.: On certain functions resembling quaternions, and on a new imaginary in algebra.Phil. Mag. (3) 33 (1848), 435-439. 10.1080/14786444808646139
Reference: [6] Cockle, J.: On a new imaginary in algebra.Phil. Mag. (3) 34 (1849), 37-47. 10.1080/14786444908646169
Reference: [7] Cockle, J.: On the symbols of algebra, and on the theory of tessarines.Phil. Mag. (3) 34 (1849), 406-410. 10.1080/14786444908646257
Reference: [8] Cockle, J.: On impossible equations, on impossible quantities, and on tessarines.Phil. Mag. (3) 37 (1850), 281-283. 10.1080/14786445008646598
Reference: [9] Daşdemir, A., Bilgici, G.: Gaussian Mersenne numbers and generalized Mersenne quaternions.Notes Number Theory Discrete Math. 25 (2019), 87-96. MR 3914745, 10.7546/nntdm.2019.25.3.87-96
Reference: [10] Ochalik, P., W{ł}och, A.: On generalized Mersenne numbers, their interpretations and matrix generators.Ann. Univ. Mariae Curie-Sk{ł}odowska, Sect. A 72 (2018), 69-76. Zbl 1441.11027, MR 3832418, 10.17951/a.2018.72.1.69-76
Reference: [11] Olariu, S.: Commutative complex numbers in four dimensions.Complex Numbers in $n$ Dimensions North-Holland Mathematics Studies 190. Elsevier, Amsterdam (2002), 51-147. Zbl 1023.30001, MR 1922267, 10.1016/S0304-0208(02)80004-4
Reference: [12] Pogorui, A. A., Rodríguez-Dagnino, R. M., Rodríguez-Said, R. D.: On the set of zeros of bihyperbolic polynomials.Complex Var. Elliptic Equ. 53 (2008), 685-690. Zbl 1158.30300, MR 2431350, 10.1080/17476930801973014
Reference: [13] Rochon, D., Shapiro, M.: On algebraic properties of bicomplex and hyperbolic numbers.An. Univ. Oradea, Fasc. Mat. 11 (2004), 71-110. Zbl 1114.11033, MR 2127591
Reference: [14] Sergeev, A. M.: Generalized Mersenne matrices and Balonin's conjecture.Autom. Control Comput. Sci. 48 (2014), 214-220. 10.3103/S0146411614040063
Reference: [15] Soykan, Y.: A study of generalized Mersenne numbers.J. Progress. Research Math. 18 (2021), 90-108.
.

Files

Files Size Format View
MathBohem_149-2024-1_7.pdf 192.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo