Previous |  Up |  Next

Article

Keywords:
degenerate Keller–Segel system; logistic source
Summary:
This paper deals with existence of finite-time blow-up solutions to a degenerate parabolic–elliptic Keller–Segel system with logistic source. Recently, finite-time blow-up was established for a degenerate Jäger–Luckhaus system with logistic source. However, blow-up solutions of the aforementioned system have not been obtained. The purpose of this paper is to construct blow-up solutions of a degenerate Keller–Segel system with logistic source.
References:
[1] Black, T., Fuest, M., Lankeit, J.: Relaxed parameter conditions for chemotactic collapse in logistic-type parabolic-elliptic Keller-Segel systems. Z. Angew. Math. Phys. 72 (96) (2021), 23 pp. MR 4252274
[2] Fuest, M.: Blow-up profiles in quasilinear fully parabolic Keller-Segel systems. Nonlinearity 33 (5) (2020), 2306–2334. DOI 10.1088/1361-6544/ab7294 | MR 4105360
[3] Fuest, M.: Approaching optimality in blow-up results for Keller-Segel systems with logistic-type dampening. NoDEA Nonlinear Differential Equations Appl. 28 (16) (2021), 17 pp. MR 4223515
[4] Ishida, S., Yokota, T.: Global existence of weak solutions to quasilinear degenerate Keller–Segel systems of parabolic–parabolic type. J. Differential Equations 252 (2) (2012), 1421–1440. DOI 10.1016/j.jde.2011.02.012 | MR 2853545
[5] Ishida, S., Yokota, T.: Blow-up in finite or infinite time for quasilinear degenerate Keller–Segel systems of parabolic–parabolic type. Discrete Contin. Dyn. Syst. Ser. B 18 (10) (2013), 2569–2596. MR 3124753
[6] Lankeit, J.: Locally bounded global solutions to a chemotaxis consumption model with singular sensitivity and nonlinear diffusion. J. Differential Equations 262 (7) (2017), 4052–4084. DOI 10.1016/j.jde.2016.12.007 | MR 3599425
[7] Tanaka, Y.: Boundedness and finite-time blow-up in a quasilinear parabolic–elliptic chemotaxis system with logistic source and nonlinear production. J. Math. Anal. Appl. 506 (2022), 29 pp., no. 125654. DOI 10.1016/j.jmaa.2021.125654 | MR 4315564
[8] Tanaka, Y., Yokota, T.: Finite-time blow-up in a quasilinear degenerate parabolic–elliptic chemotaxis system with logistic source and nonlinear production. Discrete Contin. Dyn. Syst. Ser. B 28 (1) (2023), 262–286. DOI 10.3934/dcdsb.2022075 | MR 4489725
[9] Winkler, M.: Blow-up in a higher-dimensional chemotaxis system despite logistic growth restriction. J. Math. Anal. Appl. 384 (2) (2011), 261–272. DOI 10.1016/j.jmaa.2011.05.057 | MR 2825180
[10] Winkler, M.: Finite-time blow-up in low-dimensional Keller–Segel systems with logistic-type superlinear degradation. Z. Angew. Math. Phys. 69 (69) (2018), 40 pp. MR 3772030
[11] Winkler, M., Djie, K.C.: Boundedness and finite-time collapse in a chemotaxis system with volume-filling effect. Nonlinear Anal. 72 (2) (2010), 1044–1064. DOI 10.1016/j.na.2009.07.045 | MR 2579368
Partner of
EuDML logo