[1] Baldelli, L., Filippucci, R.:
A priori estimates for elliptic problems via Liouville type theorems. Discrete Contin. Dyn. Syst. Ser. S 13 (7) (2020), 1883–1898.
MR 4097623
[2] Black, T., Lankeit, J., Mizukami, M.:
On the weakly competitive case in a two-species chemotaxis model. IMA J. Appl. Math. 81 (5) (2016), 860–876.
DOI 10.1093/imamat/hxw036 |
MR 3556387
[4] Fuest, M.:
Approaching optimality in blow-up results for Keller-Segel systems with logistic-type dampening. NoDEA Nonlinear Differential Equations Appl. 28 (16) (2021), 17 pp.
MR 4223515
[5] Mizukami, M.:
Boundedness and stabilization in a two-species chemotaxis-competition system of parabolic-parabolic-elliptic type. Math. Methods Appl. Sci. 41 (1) (2018), 234–249.
DOI 10.1002/mma.4607 |
MR 3745368
[6] Mizukami, M., Tanaka, Y., Yokota, T.:
Can chemotactic effects lead to blow-up or not in two-species chemotaxis-competition models?. Z. Angew. Math. Phys. 73 (239) (2022), 25 pp.
MR 4500792
[9] Tu, X., Qiu, S.:
Finite-time blow-up and global boundedness for chemotaxis system with strong logistic dampening. J. Math. Anal. Appl. 486 (1) (2020), 25 pp.
MR 4053055
[10] Winkler, M.:
Finite-time blow-up in low-dimensional Keller-Segel systems with logistic-type superlinear degradation. Z. Angew. Math. Phys. 69 (69) (2018), 40 pp.
MR 3772030