Previous |  Up |  Next

Article

Keywords:
Oberbeck-Boussinesq approximation; singular limit; low Mach number; unbounded domain; compressible Navier-Stokes-Fourier system; weak solutions; no-slip boundary condition
Summary:
We investigate the asymptotic limit of solutions to the Navier-Stokes-Fourier system with the Mach number proportional to a small parameter $\varepsilon \rightarrow 0$, the Froude number proportional to $\sqrt{\varepsilon}$ and when the fluid occupies large domain with spatial obstacle of rough surface varying when $\varepsilon\rightarrow 0$. The limit velocity field is solenoidal and satisfies the incompressible Oberbeck–Boussinesq approximation. Our studies are based on weak solutions approach and in order to pass to the limit in a convective term we apply the spectral analysis of the associated wave propagator (Neumann Laplacian) governing the motion of acoustic waves.
References:
[1] Arrieta, J.M., Krejčiřík, D.: Geometric versus spectral convergence for the Neumann Laplacian under exterior perturbation of the domain. Integral Methods in Sciences and Engineering 1 (2010), 9–19. MR 2663114
[2] Bucur, D., Feireisl, E., Nečasová, Š., Wolf, J.: On the asymptotic limit of the Navier-Stokes system in domains with rough boundaries. J. Differential Equations 244 (2008), 2890–2908. DOI 10.1016/j.jde.2008.02.040 | MR 2418180
[3] Feireisl, E.: Incompressible limits and propagation of acoustic waves in large domains with boundaries. Commun. Math. Phys. 294 (2010), 73–95. DOI 10.1007/s00220-009-0954-6 | MR 2575476
[4] Feireisl, E.: Local decay of acoustic waves in the low Mach number limits on general unbounded domains under slip boundary conditions. Commun. Partial Differential Equations 36 (2011), 1778–1796. DOI 10.1080/03605302.2011.602168 | MR 2832163
[5] Feireisl, E., Karper, T., Kreml, O., Stebel, J.: Stability with respect to domain of the low Mach number limit of compressible viscous fluids. Math. Models Methods Appl. Sci. 23 (13) (2013), 2465–2493. DOI 10.1142/S0218202513500371 | MR 3109436
[6] Feireisl, E., Novotný, A.: Singular limits in thermodynamics of viscous fluids. Birkhäuser, Basel, 2009. MR 2499296
[7] Feireisl, E., Schonbek, M.: On the Oberbeck-Boussinesq approximation on unbounded domains. Nonlinear partial differential equations, Abel Symposial (Holden, H., Karlsen, K.H., eds.), vol. 7, Springer, Berlin, 2012. MR 3289362
[8] Jones, P.W.: Quasiconformal mappings and extendability of functions in Sobolev spaces. Acta Math. 147 (1981), 71–88. DOI 10.1007/BF02392869
[9] Klein, R., Botta, N., Schneider, T., Munz, C.D., Roller, S., Meister, A., Hoffmann, L., Sonar, T.: Asymptotic adaptive methods for multi-scale problems in fluid mechanics. J. Engrg. Math. 39 (2001), 261–343. DOI 10.1023/A:1004844002437 | MR 1826065
[10] Lighthill, J.: Waves in Fluids. Cambridge University Press, 1978.
[11] Wróblewska-Kamińska, A.: Asymptotic analysis of complete fluid system on varying domain: form compressible to incompressible flow. SIAM J. Math. Anal. 49 (5) (2017), 3299–3334. DOI 10.1137/15M1029655 | MR 3697164
[12] Zeytounian, R.K.: Joseph Boussinesq and his approximation: a contemporary view. C.R. Mecanique 331 (2003), 575–586. DOI 10.1016/S1631-0721(03)00120-7
[13] Zeytounian, R.K.: Theory and Applications of Viscous Fluid Flows. Springer, Berlin, 2004. MR 2028446
Partner of
EuDML logo