[1] Cao, X.:
Global bounded solutions of the higher-dimensional Keller-Segel system under smallness conditions in optimal spaces. Discrete Contin. Dyn. Syst. 35 (2015), 1891–1904.
DOI 10.3934/dcds.2015.35.1891 |
MR 3294230
[3] Cieślaka, T., Winkler, M.:
Stabilization in a higher-dimensional quasilinear Keller-Segel system with exponentially decaying diffusivity and subcritical sensitivity. Nonlinear Anal. 159 (2017), 129–144.
MR 3659827
[4] Hashira, T., Ishida, S., Yokota, T.:
Finite-time blow-up for quasilinear degenerate Keller-Segel systems of parabolic-parabolic type. J. Differential Equations 264 (2018), 6459–6485.
DOI 10.1016/j.jde.2018.01.038 |
MR 3770055
[5] Ishida, S., Seki, K., Yokota, T.:
Boundedness in quasilinear Keller-Segel systems of parabolic-parabolic type on non-convex bounded domains. J. Differential Equations 256 (2014), 2993–3010.
DOI 10.1016/j.jde.2014.01.028 |
MR 3199754
[6] Ishida, S., Yokota, T.:
Boundedness in a quasilinear fully parabolic Keller-Segel system via maximal Sobolev regularity. Discrete Contin. Dyn. Syst. Ser. S 13 (2020), 212–232.
MR 4043690
[7] Ishida, S., Yokota, T.:
Weak stabilization in degenerate parabolic equations in divergence form: application to degenerate Keller-Segel systems. Calc. Var. Partial Differential Equations 61 (2022), Paper No. 105.
DOI 10.1007/s00526-022-02203-w |
MR 4404850
[8] Jiang, J.:
Convergence to equilibria of global solutions to a degenerate quasilinear Keller-Segel system. Z. Angew. Math. Phys. 69 (2018), Paper No. 130.
DOI 10.1007/s00033-018-1025-7 |
MR 3856789
[9] Langlais, M., Phillips, D.:
Stabilization of solutions of nonlinear and degenerate evolution equations. Nonlinear Anal. 9 (1985), 321–333.
DOI 10.1016/0362-546X(85)90057-4
[10] Lankeit, J.:
Infinite time blow-up of many solutions to a general quasilinear parabolic-elliptic Keller-Segel system. Discrete Contin. Dyn. Syst. Ser. S 13 (2020), 233–255.
MR 4043691
[11] Laurençot, P., Mizoguchi, N.:
Finite time blowup for the parabolic-parabolic Keller-Segel system with critical diffusion. Ann. Inst. H. Poincaré Anal. Non Linéaire 34 (2017), 197–220.
DOI 10.1016/j.anihpc.2015.11.002 |
MR 3592684
[13] Sugiyama, Y., Kunii, H.:
Global existence and decay properties for a degenerate Keller-Segel model with a power factor in drift term. J. Differential Equations 227 (2006), 333–364.
DOI 10.1016/j.jde.2006.03.003 |
MR 2235324
[14] Tao, Y., Winkler, M.:
Boundedness in a quasilinear parabolic-parabolic Keller-Segel system with subcritical sensitivity. J. Differential Equations 252 (2012), 692–715.
DOI 10.1016/j.jde.2011.08.019 |
MR 2852223