[1] Asrorov, F., Sobchuk, V., Kurylko, O.:
Finding of bounded solutions to linear impulsive systems. East-Europ. J. Enterprise Technol. 6 (4(102)) (2019), 14–20.
DOI 10.15587/1729-4061.2019.178635
[2] Barabash, O., Dakhno, N., Shevchenko, H., Sobchuk, V.: Unmanned aerial vehicles flight trajectory optimisation on the basis of variational enequality algorithm and projection method. Proceeding 2019 IEEE 5th International Conference “Actual Problems of Unmanned Aerial Vehicles Developments” (APUAVD), National Aviation University, Kyiv, Ukraine, 2019, pp. 136–139.
[3] Chepyzkov, V.V., Vishik, M.I.:
Attractors for equations of mathematical physics. vol. 49, AMS Colloquium Publications, 2002.
MR 1868930
[4] Dashkovskiy, S., Feketa, P., Kapustyan, O., Romaniuk, I.:
Invariance and stability of global attractors for multi-valued impulsive dynamical systems. J. Math. Anal. Appl. 458 (1) (2018), 193–218.
DOI 10.1016/j.jmaa.2017.09.001 |
MR 3711900
[5] Dashkovskiy, S., Kapustyan, O., Romaniuk, I.:
Global attractors of impulsive parabolic inclusions. Discrete Contin. Dyn. Syst. Ser. B 22 (5) (2017), 1875–1886.
MR 3627133
[6] Dashkovskiy, S., Kapustyan, O., Schmid, J.:
A local input-to-state stability result w.r.t. attractors of nonlinear reaction-diffusion equations. Math. Control Signals Systems 32 (3) (2020), 309–326.
DOI 10.1007/s00498-020-00256-w |
MR 4149749
[8] Haraux, A., Kirane, M.:
Estimation $C^1$ pour des problemes paraboliques semi-lineaires. Ann. Fac. Sci. Toulouse Math. 5 (1983), 265–280.
DOI 10.5802/afst.598
[9] Kapustyan, O.V., Kapustian, O.A., Gorban, N.V., Khomenko, O.V.:
Strong global attractor for the three-dimensional Navier-Stokes system of equations in unbounded domain of channel type. J. Automat. Inform. Sci. 47 (11) (2015), 48–59.
DOI 10.1615/JAutomatInfScien.v47.i11.40
[10] Kapustyan, O.V., Kasyanov, P.O., Valero, J.:
Structure of the global attractor for weak solutions of a reaction-diffusion equation. Appl. Math. Inform. Sci. 9 (5) (2015), 2257–2264.
MR 3358694
[11] Kichmarenko, O., Stanzhytskyi, O.:
Sufficient conditions for the existence of optimal controls for some classes of functional-differential equations. Nonlinear Dyn. Syst. Theory 18 (2) (2018), 196–211.
MR 3820833
[12] Manthey, R., Zausinger, T.: Stochastic equations in $L_{\rho }^2$. Stochastic Rep. 66 (1977), 370–373.
[13] Mironchenko, A., Prieur, Ch.:
Input-to-state stability of infinite-dimensional systems: recent results and open questions. SIAM Rev. 62 (2020), 529–614.
DOI 10.1137/19M1291248 |
MR 4131339
[14] Mironchenko, A., Wirtz, F.:
Characterization of input-to-state stability for infinite-dimensional systems. IEEE Trans. Automat. Control 63 (6) (2018), 1602–1617.
DOI 10.1109/TAC.2017.2756341 |
MR 3805142
[16] Nakonechnyi, O.G., Kapustian, O.A., Chikrii, A.O.:
Approximate guaranteed mean square estimates of functionals on solutions of parabolic problems with fast oscillating coefficients under nonlinear observations. Cybernet. Systems Anal. 55 (5) (2019), 785–795.
DOI 10.1007/s10559-019-00189-6 |
MR 4017248
[17] Pazy, A.: Semigroups of linear operators and applications to PDE. Springer-Verlag New York, 1983.
[18] Pichkur, V.V., Sobchuk, V.V.: Mathematical models and control design of a functionally stable technological process. J. Optim. Differ. Equ. Appl. (JODEA) 21 (1) (2021), 1–11.
[19] Robinson, J.:
Infinite-dimensional dynamical systems. An introduction to dissipative parabolic PDEs and the theory of global attractors. Cambridge University Press, 2001.
MR 1881888
[21] Schmid, J., Kapustyan, O., Dashkovskiy, S.:
Asymptotic gain results for attractors of semilinear systems. Math. Control Relat. Fields 12 (3) (2022), 763–788.
DOI 10.3934/mcrf.2021044 |
MR 4459660
[22] Sell, G., You, Y.: Dynamics of evolutionary equations. Springer New York, NY, 2000.
[23] Sontag, E.D.:
Smooth stabilization implies coprime factorization. IEEE Trans. Automat. Control 34 (4) (1989), 435–443.
DOI 10.1109/9.28018
[24] Sontag, E.D.: Mathematical control theory. Deterministic finite-dimensional systems. Springer, N.Y., 1998.
[25] Stanzhitskii, A.M.:
Investigation of invariant sets of Itô stochastic systems with the use of Lyapunov functions. Ukrainian Math. J. 53 (2) (2001), 323–327.
DOI 10.1023/A:1010437625118 |
MR 1833535
[26] Stanzhyts’kyi, O.:
Investigation of exponential dichotomy of Ito stochastic systems by using quadratic forms. Ukrainian Math. J. 53 (11) (2001), 1882–1894.
DOI 10.1023/A:1015259031308