[1] Eisner, J., Kučera, M., Väth, M.:
Global bifurcation of a reaction-diffusion system with inclusions. J. Anal. Appl. 28 (4) (2009), 373–409.
MR 2550696
[2] Eisner, J., Väth, M.:
Degree, instability and bifurcation of reaction-diffusion systems with obstacles near certain hyperbolas. Nonlinear Anal. 135 (2016), 158–193.
MR 3473115
[3] Kouba, P.: Existence of nontrivial solutions for reaction-diffusion systems of activator-inhibitor type with dependence on parameter. Master's thesis, Č. Budějovice, Faculty of Science, University of South Bohemia, 2015, (in Czech).
[4] Kučera, M., Väth, M.:
Bifurcation for reaction-diffusion systems with unilateral and Neumann boundary conditions. J. Differential Equations 252 (2012), 2951–2982.
DOI 10.1016/j.jde.2011.10.016 |
MR 2871789
[6] Pšenicová, M.: Newton boundary value problem for reaction-diffusion system of activator-inhibitor type with parameter. Bachelor thesis, Č. Budějovice (2018), Faculty of Science, University of South Bohemia, 2018, (in Czech).
[7] Turing, A.M.:
The chemical basis of morphogenesis. Philos. Trans. Roy. Soc. London Ser. B 237 (641) (1952), 37–72.
DOI 10.1098/rstb.1952.0012