Previous |  Up |  Next

Article

Keywords:
Maxwell’s equations
Summary:
Using Maxwell’s mental imagery of a tube of fluid motion of an imaginary fluid, we derive his equations $\operatorname{curl} \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}$, $\operatorname{curl} \mathbf{H} = \frac{\partial \mathbf{D}}{\partial t} + \mathbf{j}$, $\operatorname{div} \mathbf{D} = \varrho $, $\operatorname{div} \mathbf{B} = 0$, which together with the constituting relations $\mathbf{D} = \varepsilon _0 \mathbf{E}$, $\mathbf{B} = \mu _0 \mathbf{H}$, form what we call today Maxwell’s equations. Main tools are the divergence, curl and gradient integration theorems and a version of Poincare’s lemma formulated in vector calculus notation. Remarks on the history of the development of electrodynamic theory, quotations and references to original and secondary literature complement the paper.
References:
[1] Arthur, J.W.: The evolution of Maxwell’s equations from 1862 to the present day. IEEE Antennas and Propagation Magazine 55 (3) (2013), 61–81. DOI 10.1109/MAP.2013.6586627
[2] Bork, A.M.: Maxwell, displacement current, and symmetry. Amer. J. Phys. 31 (11) (1963), 854–859.
[3] Crowe, M.J.: A history of vector analysis: The evolution of the idea of a vectorial system. New York, Dover Publications, 1994.
[4] Darrigol, O.: Electrodynamics from Ampère to Einstein. Oxford University Press, 2003.
[5] Diener, G., Weissbarth, J., Grossmann, F., Schmidt, R.: Obtaining Maxwell’s equations heuristically. Amer. J. Phys. 81 (2) (2013), 120–123. DOI 10.1119/1.4768196
[6] Erlichson, H.: The experiments of Biot and Savart concerning the force exerted by a current on a magnetic needle. Amer. J. Phys. 66 (5) (1998), 385–391. DOI 10.1119/1.18878
[7] Faraday, M.: Experimental Researches in Electricity. New York, Dover, 1965, Reprint.
[8] Fumeron, S., Berche, B., Moraes, F.: Improving student understanding of electrodynamics: The case for differential forms. Amer. J. Phys. 88 (12) (2020), 1083–1093. DOI 10.1119/10.0001754
[9] Gauthier, N.: Displacement current, transport current, and charge conservation. Amer. J. Phys. 51 (2) (1983), 168–170. DOI 10.1119/1.13317
[10] Gibbs, J.W.: Elements of vector analysis arranged for the use of students in physics. New Haven, Tuttle, Morehouse & Taylor, 1881–84, unpublished.
[11] Gibbs, J.W., Wilson, E.B.: Vector Analysis. New York, Charles Scribner's Sons, 1901.
[12] Hon, G., Goldstein, B.R.: Reflections on the Practice of Physics: James Clerk Maxwell’s Methodological Odyssey in Electromagnetism. Routledge, 2020.
[13] Hunt, B.J.: Oliver Heaviside, A first-rate oddity. Physics Today 65 (11) (2012), 48–54. DOI 10.1063/PT.3.1788
[14] Karam, R., Coimbra, D., Pietrocola, M.: Comparing teaching approaches about Maxwell’s displacement current. Science & Education 23 (8) (2014), 1637–1661. DOI 10.1007/s11191-013-9624-3
[15] Lee, J.M.: Smooth manifolds. Introduction to smooth manifolds, Springer, New York, NY, 2012. MR 2954043
[16] Lindel, I.V.: Differential forms in electromagnetics. vol. 22, John Wiley & Sons, 2004. MR 2046805
[17] Maxwell, J.C.: On Faraday’s lines of force. Philosophical Magazine 4 (11) (1856), 404–405, Abstract of Maxwell .
[18] Maxwell, J.C.: On Faraday’s lines of force. Trans. Cambridge Philos. Soc. 10 (1858), 27–83, Reprinted in 1965, vol. 1, 155–229.
[19] Maxwell, J.C.: On physical lines of force. Philosophical Magazine 4 (21) (1861), 161–175, 281–291, 338–348, Plate. Philosophical Magazine 4, no. 23 (1862), 12–24, 85–95. Reprinted in 1965, vol. 1, 451–513.
[20] Maxwell, J.C.: A dynamical theory of the electromagnetic field. Philosophical Transactions of the Royal Society of London 155 (1865), 459–512, Reprinted in 1965, vol. 1, 526–597.
[21] Maxwell, J.C.: A Treatise on Electricity and Magnetism. Oxford, Clarendon Press, 1873, Reprinted, Cambridge University Press, 2010.
[22] Maxwell, J.C.: The scientific papers of James Clerk Maxwell. Cambridge, University Press, 1890, Reprinted, two volumes bound as one. New York, Dover, 1965.
[23] Schleifer, N.: Differential forms as a basis for vector analysis – with applications to electrodynamics. Amer. J. Phys. 51 (1983), 1139–1145. DOI 10.1119/1.13325
[24] Siegel, D.M.: Innovation in Maxwell’s electromagnetic theory: molecular vortices, displacement current, and light. Cambridge University Press, 1991.
[25] Spivak, M.: A comprehensive introduction to differential geometry. Publish or Perish, Inc., Boston, Mass., 1999.
[26] Thomson, W.: Reprint of Papers on Electrostatics and Magnetism. Cambridge University Press, 2011, (Cambridge Library Collection - Physical Sciences). Cambridge.
[27] Turnbull, G.: Maxwell’s equations [Scanning Our Past]. Proceedings of the IEEE 101, vol. 7, 2013, pp. 1801–1805.
[28] Unz, H.: Oliver Heaviside (1850-1925). IEEE Transactions on education, 6 1 (1963), 30–33. DOI 10.1109/TE.1963.4321796
[29] Vinogradov, A.P.: On the form of constitutive equations in electrodynamics. Physics-Uspekhi 45 (3) (2002), 331–338. DOI 10.1070/PU2002v045n03ABEH001079
[30] Warnick, K.F., Karl, F., Selfridge, R.H., Arnold, D.V.: Teaching electromagnetic field theory using differential forms. IEEE Transactions on education 40 1 (1997), 53–68. DOI 10.1109/13.554670
[31] Youtube channel, : Ampère et l’histoire de l’électricité. Coulomb invente une balance pour l’électricité. https://www.youtube.com/watch?v=omobCEi20ng
[32] Youtube channel, : The Royal Institution - Ri Archives. Prelude To Power: 1931 Michael Faraday Celebration. https://www.youtube.com/watch?v=mxwVIOHEG4I
Partner of
EuDML logo