[1] Arthur, J.W.:
The evolution of Maxwell’s equations from 1862 to the present day. IEEE Antennas and Propagation Magazine 55 (3) (2013), 61–81.
DOI 10.1109/MAP.2013.6586627
[2] Bork, A.M.: Maxwell, displacement current, and symmetry. Amer. J. Phys. 31 (11) (1963), 854–859.
[3] Crowe, M.J.: A history of vector analysis: The evolution of the idea of a vectorial system. New York, Dover Publications, 1994.
[4] Darrigol, O.: Electrodynamics from Ampère to Einstein. Oxford University Press, 2003.
[5] Diener, G., Weissbarth, J., Grossmann, F., Schmidt, R.:
Obtaining Maxwell’s equations heuristically. Amer. J. Phys. 81 (2) (2013), 120–123.
DOI 10.1119/1.4768196
[6] Erlichson, H.:
The experiments of Biot and Savart concerning the force exerted by a current on a magnetic needle. Amer. J. Phys. 66 (5) (1998), 385–391.
DOI 10.1119/1.18878
[7] Faraday, M.: Experimental Researches in Electricity. New York, Dover, 1965, Reprint.
[8] Fumeron, S., Berche, B., Moraes, F.:
Improving student understanding of electrodynamics: The case for differential forms. Amer. J. Phys. 88 (12) (2020), 1083–1093.
DOI 10.1119/10.0001754
[9] Gauthier, N.:
Displacement current, transport current, and charge conservation. Amer. J. Phys. 51 (2) (1983), 168–170.
DOI 10.1119/1.13317
[10] Gibbs, J.W.: Elements of vector analysis arranged for the use of students in physics. New Haven, Tuttle, Morehouse & Taylor, 1881–84, unpublished.
[11] Gibbs, J.W., Wilson, E.B.: Vector Analysis. New York, Charles Scribner's Sons, 1901.
[12] Hon, G., Goldstein, B.R.: Reflections on the Practice of Physics: James Clerk Maxwell’s Methodological Odyssey in Electromagnetism. Routledge, 2020.
[13] Hunt, B.J.:
Oliver Heaviside, A first-rate oddity. Physics Today 65 (11) (2012), 48–54.
DOI 10.1063/PT.3.1788
[14] Karam, R., Coimbra, D., Pietrocola, M.:
Comparing teaching approaches about Maxwell’s displacement current. Science & Education 23 (8) (2014), 1637–1661.
DOI 10.1007/s11191-013-9624-3
[15] Lee, J.M.:
Smooth manifolds. Introduction to smooth manifolds, Springer, New York, NY, 2012.
MR 2954043
[16] Lindel, I.V.:
Differential forms in electromagnetics. vol. 22, John Wiley & Sons, 2004.
MR 2046805
[17] Maxwell, J.C.: On Faraday’s lines of force. Philosophical Magazine 4 (11) (1856), 404–405, Abstract of Maxwell .
[18] Maxwell, J.C.: On Faraday’s lines of force. Trans. Cambridge Philos. Soc. 10 (1858), 27–83, Reprinted in 1965, vol. 1, 155–229.
[19] Maxwell, J.C.: On physical lines of force. Philosophical Magazine 4 (21) (1861), 161–175, 281–291, 338–348, Plate. Philosophical Magazine 4, no. 23 (1862), 12–24, 85–95. Reprinted in 1965, vol. 1, 451–513.
[20] Maxwell, J.C.: A dynamical theory of the electromagnetic field. Philosophical Transactions of the Royal Society of London 155 (1865), 459–512, Reprinted in 1965, vol. 1, 526–597.
[21] Maxwell, J.C.: A Treatise on Electricity and Magnetism. Oxford, Clarendon Press, 1873, Reprinted, Cambridge University Press, 2010.
[22] Maxwell, J.C.: The scientific papers of James Clerk Maxwell. Cambridge, University Press, 1890, Reprinted, two volumes bound as one. New York, Dover, 1965.
[23] Schleifer, N.:
Differential forms as a basis for vector analysis – with applications to electrodynamics. Amer. J. Phys. 51 (1983), 1139–1145.
DOI 10.1119/1.13325
[24] Siegel, D.M.: Innovation in Maxwell’s electromagnetic theory: molecular vortices, displacement current, and light. Cambridge University Press, 1991.
[25] Spivak, M.: A comprehensive introduction to differential geometry. Publish or Perish, Inc., Boston, Mass., 1999.
[26] Thomson, W.: Reprint of Papers on Electrostatics and Magnetism. Cambridge University Press, 2011, (Cambridge Library Collection - Physical Sciences). Cambridge.
[27] Turnbull, G.: Maxwell’s equations [Scanning Our Past]. Proceedings of the IEEE 101, vol. 7, 2013, pp. 1801–1805.
[30] Warnick, K.F., Karl, F., Selfridge, R.H., Arnold, D.V.:
Teaching electromagnetic field theory using differential forms. IEEE Transactions on education 40 1 (1997), 53–68.
DOI 10.1109/13.554670