[1] Berezansky, L., Braverman, E., Idels, L.:
Nicholson’s blowflies differential equations revisited: Main results and open problems. Appl. Math. Model. 34 (2010), 1405–1417.
DOI 10.1016/j.apm.2009.08.027 |
MR 2592579
[2] Berezansky, L., Braverman, E., Idels, L.:
Mackey-Glass model of hematopoiesis with monotone feedback revisited. Appl. Math. Comput. 219 (9) (2013), 4892–4907.
DOI 10.1016/j.amc.2012.10.052 |
MR 3001538
[3] Diekmann, O., van Gils, S., Verdyn Lunel, S., Walther, H.-O.: Delay Equations: Complex, Functional, and Nonlinear Analysis. Springer-Verlag, New York, 1995.
[4] Erneux, T.:
Applied delay differential equations. Surveys and Tutorials in the Applied Mathematical Sciences, vol. 3, Springer Verlag, 2009.
MR 2498700
[5] Györy, I., Ladas, G.: Oscillation Theory of Delay Differential Equations. Oxford Science Publications, Clarendon Press, Oxford, 1991, 368 pp.
[6] Hale, J.K., Verduyn Lunel, S.M.:
Introduction to Functional Differential Equations. Applied Mathematical Sciences, Springer-Verlag, New York, 1993.
Zbl 0787.34002
[7] Ivanov, A.F., Sharkovsky, A.N.: Oscillations in singularly perturbed delay equations. Dynamics Reported (New Series) 1 (1991), 165–224.
[8] Kuang, Y.:
Delay Differential Equations with Applications in Population Dynamics. Mathematics in Science and Engineering, vol. 191, Academic Press Inc., 1993, p. 398.
Zbl 0777.34002
[9] Mackey, M.C., Glass, L.:
Oscillation and chaos in physiological control systems. Science 197 (1977), 287–289.
DOI 10.1126/science.267326
[10] Smith, H.:
An Introduction to Delay Differential Equations with Applications to the Life Sciences. Texts in Applied Mathematics, vol. 57, Springer-Verlag, 2011.
MR 2724792 |
Zbl 1227.34001
[12] Wazewska-Czyzewska, M., Lasota, A.: Mathematical models of the red cell system. Matematyka Stosowana 6 (1976), 25–40, in Polish.