Previous |  Up |  Next

Article

Keywords:
oscillation; $p(t)$-Laplacian; half-linear differential equations
Summary:
This paper deals with the oscillation problems on the nonlinear differential equation $(a(t)|x^{\prime }|^{p(t)-2}x^{\prime })^{\prime }+b(t)|x|^{\lambda -2}x=0$ involving $p(t)$-Laplacian. Sufficient conditions are given under which all proper solutions are oscillatory. In addition, we give a-priori estimates for nonoscillatory solutions and propose an open problem.
References:
[1] Bartušek, M., Fujimoto, K.: Singular solutions of nonlinear differential equations with $p(t)$-Laplacian. J. Differential Equations 269 (2020), 11646–11666. DOI 10.1016/j.jde.2020.08.046 | MR 4152220
[2] Berselli, L.C., Breit, D., Diening, L.: Convergence analysis for a finite element approximation of a steady model for electrorheological fluids. Numer. Math. 132 (2016), 657–689. DOI 10.1007/s00211-015-0735-4 | MR 3474486
[3] Chanturia, T.A.: On singular solutions of strongly nonlinear systems of ordinary differential equations. Function theoretic methods in differential equations, Res. Notes in Math., no. 8, Pitman, London, 1976, pp. 196–204.
[4] Došlá, Z., Fujimoto, K.: Asymptotic behavior of solutions to differential equations with $p(t)$-Laplacian. Commun. Contemp. Math. 24 (2022), 1–22, No. 2150046. DOI 10.1142/S0219199721500462 | MR 4508281
[5] Došlá, Z., Marini, M.: On super-linear Emden–Fowler type differential equations. J. Math. Anal. Appl. 416 (2014), 497–510. DOI 10.1016/j.jmaa.2014.02.052 | MR 3188719
[6] Došlá, Z., Marini, M.: Monotonicity conditions in oscillation to superlinear differential equations. Electron. J. Qual. Theory Differ. Equ. 2016 (2016), 1–13, No. 54. MR 3533264
[7] Došlý, O., Řehák, P.: Half-Linear Differential Equations. North-Holland Mathematics Studies, Elsevier Science B.V., Amsterdam, 2005. MR 2158903
[8] Fujimoto, K.: Power comparison theorem for oscillation problems for second order differential equations with $p(t)$-Laplacian. Acta Math. Hungar. 162 (2020), 333–344. DOI 10.1007/s10474-020-01034-5 | MR 4169028
[9] Fujimoto, K., Yamaoka, N.: Oscillation constants for Euler type differential equations involving the $p(t)$-Laplacian. J. Math. Anal. Appl. 470 (2019), 1238–1250. DOI 10.1016/j.jmaa.2018.10.063 | MR 3870613
[10] Harjulehto, P., Hästö, P., Lê, Ú.V., Nuortio, M.: Overview of differential equations with non-standard growth. Nonlinear Anal. 72 (2010), 4551–4574. DOI 10.1016/j.na.2010.02.033 | MR 2639204 | Zbl 1188.35072
[11] Kiguradze, I.T., Chanturia, T.A.: Asymptotic properties of solutions of nonautonomous ordinary differential equations. Kluwer Academic Publishers Group, Dordrecht, 1993. Zbl 0782.34002
[12] Kitano, M., Kusano, T.: On a class of second order quasilinear ordinary differential equations. Hiroshima Math. J. 25 (1995), 321–355. DOI 10.32917/hmj/1206127714
[13] Mehta, B.N., Aris, R.: A note on a form of the Emden-Fowler equation. J. Math. Anal. Appl. 36 (1971), 611–621. DOI 10.1016/0022-247X(71)90043-6
[14] Rajagopal, K.R., Růžička, M.: On the modeling of electrorheological materials. Mech. Res. Comm. 23 (1996), 401–407. DOI 10.1016/0093-6413(96)00038-9
[15] Şahiner, Y., Zafer, A.: Oscillation of nonlinear elliptic inequalities with $p(x)$-Laplacian. Complex Var. Elliptic Equ. 58 (2013), 537–546. DOI 10.1080/17476933.2012.686493 | MR 3038745
[16] Shoukaku, Y.: Oscillation criteria for half-linear differential equations with $p(t)$-Laplacian. Differ. Equ. Appl. 6 (2014), 353–360. MR 3265452
[17] Shoukaku, Y.: Oscillation criteria for nonlinear differential equations with $p(t)$-Laplacian. Math. Bohem. 141 (2016), 71–81. DOI 10.21136/MB.2016.5 | MR 3475138
[18] Zhang, Q.: Oscillatory property of solutions for $p(t)$-Laplacian equations. J. Inequal. Appl. 2007 (2007), 1–8, 58548. DOI 10.1155/2007/58548 | MR 2335972
Partner of
EuDML logo