[1] Bartušek, M., Fujimoto, K.:
Singular solutions of nonlinear differential equations with $p(t)$-Laplacian. J. Differential Equations 269 (2020), 11646–11666.
DOI 10.1016/j.jde.2020.08.046 |
MR 4152220
[2] Berselli, L.C., Breit, D., Diening, L.:
Convergence analysis for a finite element approximation of a steady model for electrorheological fluids. Numer. Math. 132 (2016), 657–689.
DOI 10.1007/s00211-015-0735-4 |
MR 3474486
[3] Chanturia, T.A.: On singular solutions of strongly nonlinear systems of ordinary differential equations. Function theoretic methods in differential equations, Res. Notes in Math., no. 8, Pitman, London, 1976, pp. 196–204.
[4] Došlá, Z., Fujimoto, K.:
Asymptotic behavior of solutions to differential equations with $p(t)$-Laplacian. Commun. Contemp. Math. 24 (2022), 1–22, No. 2150046.
DOI 10.1142/S0219199721500462 |
MR 4508281
[6] Došlá, Z., Marini, M.:
Monotonicity conditions in oscillation to superlinear differential equations. Electron. J. Qual. Theory Differ. Equ. 2016 (2016), 1–13, No. 54.
MR 3533264
[7] Došlý, O., Řehák, P.:
Half-Linear Differential Equations. North-Holland Mathematics Studies, Elsevier Science B.V., Amsterdam, 2005.
MR 2158903
[8] Fujimoto, K.:
Power comparison theorem for oscillation problems for second order differential equations with $p(t)$-Laplacian. Acta Math. Hungar. 162 (2020), 333–344.
DOI 10.1007/s10474-020-01034-5 |
MR 4169028
[9] Fujimoto, K., Yamaoka, N.:
Oscillation constants for Euler type differential equations involving the $p(t)$-Laplacian. J. Math. Anal. Appl. 470 (2019), 1238–1250.
DOI 10.1016/j.jmaa.2018.10.063 |
MR 3870613
[11] Kiguradze, I.T., Chanturia, T.A.:
Asymptotic properties of solutions of nonautonomous ordinary differential equations. Kluwer Academic Publishers Group, Dordrecht, 1993.
Zbl 0782.34002
[12] Kitano, M., Kusano, T.:
On a class of second order quasilinear ordinary differential equations. Hiroshima Math. J. 25 (1995), 321–355.
DOI 10.32917/hmj/1206127714
[16] Shoukaku, Y.:
Oscillation criteria for half-linear differential equations with $p(t)$-Laplacian. Differ. Equ. Appl. 6 (2014), 353–360.
MR 3265452
[17] Shoukaku, Y.:
Oscillation criteria for nonlinear differential equations with $p(t)$-Laplacian. Math. Bohem. 141 (2016), 71–81.
DOI 10.21136/MB.2016.5 |
MR 3475138
[18] Zhang, Q.:
Oscillatory property of solutions for $p(t)$-Laplacian equations. J. Inequal. Appl. 2007 (2007), 1–8, 58548.
DOI 10.1155/2007/58548 |
MR 2335972