[2] Bizoń, P., Evnin, O., Ficek, F.:
A nonrelativistic limit for AdS perturbations. JHEP 12 (113) (2018), 18 pp.
MR 3900619
[3] Bizoń, P., Ficek, F., Pelinovsky, D.E., Sobieszek, S.:
Ground state in the energy super-critical Gross-Pitaevskii equation with a harmonic potential. Nonlinear Anal. 210 (2021), 36 pp., Paper No. 112358.
MR 4249792
[4] Busca, J., Sirakov, B.:
Symmetry results for semilinear elliptic systems in the whole space. J. Differential Equations 63 (2000), 41–56.
DOI 10.1006/jdeq.1999.3701
[5] Choquard, P., Stubbe, J., Vuffray, M.:
Stationary solutions of the Schrödinger-Newton model – an ODE approach. Differential Integral Equations 21 (2008), 665–679.
MR 2479686
[8] Gallo, C., Pelinovsky, D.:
On the Thomas-Fermi ground state in a harmonic potential. Asymptot. Anal. 73 (2011), 53–96.
MR 2841225
[9] Hastings, P., McLeod, J.B.:
Classical Methods in Ordinary Differential Equations With Applications to Boundary Value Problems. AMS Providence, Rhode Island, 2012.
MR 2865597
[10] Li, Y., Ni, W.:
Radial symmetry of positive solutions of nonlinear elliptic equations in $\mathbb{R}^n$. Comm. Partial Differential Equations 18 (1993), 1043–1054.
DOI 10.1080/03605309308820960
[11] Pelinovsky, D.E., Wei, J., Wu, Y.: Positive solutions of the Gross-Pitaevskii equation for energy critical and supercritical nonlinearities. arXiv:2207.10145 [math.AP].
[12] Selem, F.H.:
Radial solutions with prescribed numbers of zeros for the nonlinear Schrödinger equation with harmonic potential. Nonlinearity 24 (2011), 1795–1819.
DOI 10.1088/0951-7715/24/6/006 |
MR 2802311
[13] Selem, F.H., Kikuchi, H.:
Existence and non-existence of solution for semilinear elliptic equation with harmonic potential and Sobolev critical/supercritical nonlinearities. J. Math. Anal. Appl. 387 (2012), 746–754.
DOI 10.1016/j.jmaa.2011.09.034 |
MR 2853141
[14] Selem, F.H., Kikuchi, H., Wei, J.:
Existence and uniqueness of singular solution to stationary Schrödinger equation with supercritical nonlinearity. Discrete Contin. Dyn. Syst. 33 (2013), 4613–4626.
MR 3049094
[15] Smith, R.A.: Asymptotic stability of $x^{\prime \prime }+a(t)x^{\prime }+x=0$. Q. J. Math. 12 (1961), 123–126.