Previous |  Up |  Next

Article

Full entry | Fulltext not available (moving wall 24 months)      Feedback
Keywords:
Navier-Stokes equations; Stokes equations; rough boundary; slip boundary condition
Summary:
This article deals with the solvability of the boundary-value problem for the Navier-Stokes equations with a direction-dependent Navier type slip boundary condition in a bounded domain. Such problems arise when steady flows of fluids in domains with rough boundaries are approximated as flows in domains with smooth boundaries. It is proved by means of the Galerkin method that the boundary-value problem has a unique weak solution when the body force and the variability of the surface friction are sufficiently small compared to the viscosity and the surface friction.
References:
[1] Adams, R. A.: Sobolev Spaces. Pure and Applied Mathematics 65. Academic Press, New York (1975). DOI 10.1016/S0079-8169(13)62896-2 | MR 0450957 | Zbl 0314.46030
[2] Appell, J., Zabrejko, P. P.: Nonlinear Superposition Operators. Cambridge Tracts in Mathematics 95. Cambridge University Press, Cambridge (1990). DOI 10.1017/CBO9780511897450 | MR 1066204 | Zbl 0701.47041
[3] Galdi, G. P.: An Introduction to the Mathematical Theory of the Navier-Stokes Equations: Steady-State Problems. Springer Monographs in Mathematics. Springer, New York (2011). DOI 10.1007/978-0-387-09620-9 | MR 2808162 | Zbl 1245.35002
[4] Kamrin, K., Bazant, M. Z., Stone, H. A.: Effective slip boundary conditions for arbitrary periodic surfaces: The surface mobility tensor. J. Fluid Mech. 658 (2010), 409-437. DOI 10.1017/S0022112010001801 | MR 2678317 | Zbl 1205.76080
[5] Roux, C. Le: Flows of incompressible viscous liquids with anisotropic wall slip. J. Math. Anal. Appl. 465 (2018), 723-730. DOI 10.1016/j.jmaa.2018.05.020 | MR 3809326 | Zbl 1444.76047
[6] Miranda, C.: Un'osservazione su un teorema di Brouwer. Boll. Unione Mat. Ital., II. Ser. 3 (1940), 5-7 Italian. MR 0004775 | Zbl 0024.02203
[7] Showalter, R. E.: Hilbert Space Methods for Partial Differential Equations. Monographs and Studies in Mathematics 1. Pitman, London (1977). MR 0477394 | Zbl 0364.35001
[8] Zampogna, G. A., Magnaudet, J., Bottaro, A.: Generalized slip condition over rough surfaces. J. Fluid Mech. 858 (2019), 407-436. DOI 10.1017/jfm.2018.780 | MR 3873518 | Zbl 1415.76224
Partner of
EuDML logo