Previous |  Up |  Next

Article

Full entry | Fulltext not available (moving wall 24 months)      Feedback
Keywords:
theory of beams; deformation of cross section; spectral geometry; comparison of spectra
Summary:
The use of one theorem of spectral analysis proved by Bordoni on a model of linear anisotropic beam proposed by the author allows the determination of the variation range of vibration frequencies of a beam in two typical restraint conditions. The proposed method is very general and allows its use on a very wide set of problems of engineering practice and mathematical physics.
References:
[1] Bordoni, M.: An estimate for finite sums of eigenvalues of fiber spaces. C. R. Acad. Sci., Paris Sér. I 315 (1992), 1079-1083. MR 1191493 | Zbl 0761.53019
[2] Bordoni, M.: Spectral estimates for Schrödinger and Dirac-type operators on Riemannian manifolds. Math. Ann. 298 (1994), 693-718. DOI 10.1007/BF01459757 | MR 1268600 | Zbl 0791.58094
[3] Bordoni, M.: Spectral comparison between Dirac and Schrödinger operators. Rend. Mat. Appl., VII. Ser. 18 (1998), 181-196. MR 1638207 | Zbl 0919.58064
[4] Brézis, H.: Analyse fonctionnelle. Théorie et applications. Collection Mathématiques Appliquées pour la Maîtrise. Masson, Paris (1983), French. MR 0697382 | Zbl 0511.46001
[5] Picone, M., Fichera, G.: Trattato di analisi matematica. Tumminelli, Roma (1954), Italian. MR 0106814 | Zbl 0058.03803
[6] Reed, M., Simon, B.: Methods of Modern Mathematical Physics. Vol. I: Functional Analysis. Academic Press, New York (1972). DOI 10.1016/b978-0-12-585001-8.x5001-6 | MR 0493419 | Zbl 0242.46001
[7] Reed, M., Simon, B.: Methods of Modern Mathematical Physics. Vol. II: Fourier Analysis, Self-Adjointness. Academic Press, New York (1975). MR 0493420 | Zbl 0308.47002
[8] Reed, M., Simon, B.: Methods of Modern Mathematical Physics. Vol. IV: Analysis of Operators. Academic Press, New York (1978). MR 0493421 | Zbl 0401.47001
[9] Sabatini, L.: Estimation of vibration frequencies of linear elastic membranes. Appl. Math., Praha 63 (2018), 37-53. DOI 10.21136/AM.2018.0316-16 | MR 3763981 | Zbl 06861541
[10] Sabatini, L.: Estimates of the Laplacian spectrum and bounds of topological invariants for Riemannian manifolds with boundary. An. Ştiinţ. Univ. "Ovidius" Constanţa, Ser. Mat. 27 (2019), 179-211. DOI 10.2478/auom-2019-0027 | MR 3956406
[11] Sabatini, L.: Estimates of the Laplacian spectrum and bounds of topological invariants for Riemannian manifolds with boundary II. An. Ştiinţ. Univ. "Ovidius" Constanţa, Ser. Mat. 28 (2020), 165-179. DOI 10.2478/auom-2020-0012 | MR 4089855
[12] Sabatini, L.: A linear theory of beams with deformable cross section. J. Math. Model. 9 (2021), 465-483. DOI 10.22124/jmm.2021.17932.1548 | MR 4275997
[13] Tikhonov, A. N., Samarskij, A. A.: Equazioni della fisica matematica. Mir, Roma (1981), Italian. Zbl 0489.35001
Partner of
EuDML logo