[1] Agrachev, A., Barilari, D., Boscain, U.:
A comprehensive introduction to sub-Riemannian geometry. Cambridge Stud. Adv. Math., vol. 181, Cambridge University Press, Cambridge, 2020.
MR 3971262
[3] Bellaïche, A.:
The tangent space in sub-Riemannian geometry. Sub-Riemannian geometry, Progr. Math., vol. 144, Birkhäuser, Basel, 1996, pp. 1–78.
MR 1421822 |
Zbl 0862.53031
[5] Godoy Molina, M., Grong, E., Markina, I., Silva Leite, F.:
An intrinsic formulation of the problem on rolling manifolds. J. Dyn. Control Syst. 18 (2012), no. 2, 181–214.
DOI 10.1007/s10883-012-9139-2 |
MR 2914415
[6] Gromov, M.:
Carnot-Carathéodory spaces seen from within. Sub-Riemannian geometry, Progr. Math., vol. 144, Birkhäuser, Basel, 1996, pp. 79–323.
MR 1421823 |
Zbl 0864.53025
[7] Grong, E.:
Controllability of rolling without twisting or slipping in higher dimensions. SIAM J. Control Optim. 50 (2012), no. 4, 2462–2485.
DOI 10.1137/110829581 |
MR 2974746
[8] Grong, E.: Canonical connections on sub-Riemannian manifolds with constant symbol. arXiv preprint arXiv:2010.05366 (2020).
[10] Lee, J.M.:
Riemannian manifolds. Grad. Texts in Math., vol. 176, Springer-Verlag, New York, 1997, An introduction to curvature.
MR 1468735
[11] Lee, J.M.:
Introduction to smooth manifolds. second ed., Graduate Texts in Mathematics, vol. 218, Springer, New York, 2013.
MR 2954043
[12] Montgomery, R.:
A tour of subriemannian geometries, their geodesics and applications. Math. Surveys Monogr., vol. 91, American Mathematical Society, Providence, RI, 2002.
MR 1867362 |
Zbl 1044.53022
[15] Sharpe, R.W.:
Differential geometry. Grad. Texts in Math., vol. 166, Springer-Verlag, New York, 1997, Cartan's generalization of Klein's Erlangen program, With a foreword by S. S. Chern.
MR 1453120 |
Zbl 0876.53001