Previous |  Up |  Next

Article

Keywords:
polyfillability; Legendrian submanifold; exact Lagrangian filling
Summary:
In this note we construct examples of closed connected Legendrian submanifolds in high dimensional contact vector space that admit an arbitrary finite number of topologically distinct infinite families of diffeomorphic, but not Hamiltonian isotopic exact Lagrangian fillings.
References:
[1] An, B.H., Bae, Y., Lee, E.: Lagrangian fillings for Legendrian links of affine type. preprint 2021, arXiv:2107.04283.
[2] An, B.H., Bae, Y., Lee, E.: Lagrangian fillings for Legendrian links of finite type. preprint 2021, arXiv:2101.01943.
[3] Cao, C., Gallup, N., Hayden, K., Sabloff, J.M.: Topologically distinct Lagrangian and symplectic fillings. Math. Res. Lett. 21 (1) (2014), 85–99. DOI 10.4310/MRL.2014.v21.n1.a7 | MR 3247041
[4] Capovilla-Searle, O.: Infinitely many planar fillings and symplectic Milnor fibers. preprint 2022, arXiv:2201.03081.
[5] Casals, R., Gao, H.: Infinitely many Lagrangian fillings. Ann. of Math. 195 (1) (2022), 207–249. DOI 10.4007/annals.2022.195.1.3 | MR 4358415
[6] Casals, R., Ng, L.: Braid Loops with infinite monodromy on the Legendrian contact DGA. J. Topol. 15 (4) (2022), 1927–2016. DOI 10.1112/topo.12264
[7] Casals, R., Zaslow, E.: Legendrian weaves. preprint 2020, arXiv:2007.04943.
[8] Chantraine, B.: On Lagrangian concordance of Legendrian knots. Algebr. Geom. Topol. 10 (2010), 63–85. DOI 10.2140/agt.2010.10.63 | MR 2580429
[9] Chantraine, B., Rizell, G. Dimitroglou, Ghiggini, P., Golovko, R.: Floer theory for Lagrangian cobordisms. J. Differential Geom. 114 (3) (2020), 393–465. DOI 10.4310/jdg/1583377213 | MR 4072203
[10] Dimitroglou Rizell, G.: Legendrian ambient surgery and Legendrian contact homology. J. Symplectic Geom. 14 (3) (2016), 811–901. DOI 10.4310/JSG.2016.v14.n3.a6 | MR 3548486
[11] Ekholm, T.: Morse flow trees and Legendrian contact homology in 1-jet spaces. Geom. Topol. 11 (2007), 1083–1224. DOI 10.2140/gt.2007.11.1083 | MR 2326943
[12] Ekholm, T.: Rational symplectic field theory over$\mathbb{Z}_2$ for exact Lagrangian cobordisms. J. Eur. Math. Soc. 10 (3) (2008), 641–704. DOI 10.4171/JEMS/126 | MR 2421157
[13] Ekholm, T., Etnyre, J., Sullivan, M.: Non-isotopic Legendrian submanifolds in $\mathbb{R}^{2n+1}$. J. Differential Geom. 71 (2005), 85–128. DOI 10.4310/jdg/1143644313 | MR 2191769
[14] Ekholm, T., Honda, K., Kálmán, T.: Legendrian knots and exact Lagrangian cobordisms. J. Eur. Math. Soc. (JEMS) 18 (11) (2016), 2627–2689. DOI 10.4171/JEMS/650 | MR 3562353
[15] Eliashberg, Y., Givental, A., Hofer, H.: Introduction to symplectic field theory. Geom. Funct. Anal. Special Volume 10 (2000), 560–673. MR 1826267
[16] Gao, H., Shen, L., Weng, D.: Augmentations, fillings, and clusters. preprint 2020, arXiv:2008.10793.
[17] Gao, H., Shen, L., Weng, D.: Positive braid links with infinitely many fillings. preprint 2020, arXiv:2009.00499.
[18] Golovko, R.: A note on the front spinning construction. Bull. Lond. Math. Soc. 46 (2) (2014), 258–268. DOI 10.1112/blms/bdt091 | MR 3194745
[19] Golovko, R.: A note on the infinite number of exact Lagrangian fillings for spherical spuns. Pacific J. Math. 317 (1) (2022), 143–152. DOI 10.2140/pjm.2022.317.143 | MR 4440942
[20] Karlsson, C.: A note on coherent orientations for exact Lagrangian cobordisms. Quantum Topol. 11 (1) (2020), 1–54. DOI 10.4171/QT/132 | MR 4071329
[21] Pan, Y.: The augmentation category map induced by exact Lagrangian cobordisms. Algebr. Geom. Topol. 17 (3) (2017), 1813–1870. DOI 10.2140/agt.2017.17.1813 | MR 3677941
Partner of
EuDML logo