[1] An, B.H., Bae, Y., Lee, E.: Lagrangian fillings for Legendrian links of affine type. preprint 2021, arXiv:2107.04283.
[2] An, B.H., Bae, Y., Lee, E.: Lagrangian fillings for Legendrian links of finite type. preprint 2021, arXiv:2101.01943.
[4] Capovilla-Searle, O.: Infinitely many planar fillings and symplectic Milnor fibers. preprint 2022, arXiv:2201.03081.
[6] Casals, R., Ng, L.:
Braid Loops with infinite monodromy on the Legendrian contact DGA. J. Topol. 15 (4) (2022), 1927–2016.
DOI 10.1112/topo.12264
[7] Casals, R., Zaslow, E.: Legendrian weaves. preprint 2020, arXiv:2007.04943.
[9] Chantraine, B., Rizell, G. Dimitroglou, Ghiggini, P., Golovko, R.:
Floer theory for Lagrangian cobordisms. J. Differential Geom. 114 (3) (2020), 393–465.
DOI 10.4310/jdg/1583377213 |
MR 4072203
[12] Ekholm, T.:
Rational symplectic field theory over$\mathbb{Z}_2$ for exact Lagrangian cobordisms. J. Eur. Math. Soc. 10 (3) (2008), 641–704.
DOI 10.4171/JEMS/126 |
MR 2421157
[13] Ekholm, T., Etnyre, J., Sullivan, M.:
Non-isotopic Legendrian submanifolds in $\mathbb{R}^{2n+1}$. J. Differential Geom. 71 (2005), 85–128.
DOI 10.4310/jdg/1143644313 |
MR 2191769
[14] Ekholm, T., Honda, K., Kálmán, T.:
Legendrian knots and exact Lagrangian cobordisms. J. Eur. Math. Soc. (JEMS) 18 (11) (2016), 2627–2689.
DOI 10.4171/JEMS/650 |
MR 3562353
[15] Eliashberg, Y., Givental, A., Hofer, H.:
Introduction to symplectic field theory. Geom. Funct. Anal. Special Volume 10 (2000), 560–673.
MR 1826267
[16] Gao, H., Shen, L., Weng, D.: Augmentations, fillings, and clusters. preprint 2020, arXiv:2008.10793.
[17] Gao, H., Shen, L., Weng, D.: Positive braid links with infinitely many fillings. preprint 2020, arXiv:2009.00499.
[20] Karlsson, C.:
A note on coherent orientations for exact Lagrangian cobordisms. Quantum Topol. 11 (1) (2020), 1–54.
DOI 10.4171/QT/132 |
MR 4071329