Previous |  Up |  Next

Article

Keywords:
Hessian structure; Lychagin-Rubtsov metric; Monge-Ampère structure; Monge-Ampère equation; Plücker embedding
Summary:
We study properties of pseudo-Riemannian metrics corresponding to Monge-Ampère structures on four dimensional $T^*M$. We describe a family of Ricci flat solutions, which are parametrized by six coefficients satisfying the Plücker embedding equation. We also focus on pullbacks of the pseudo-metrics on two dimensional $M$, and describe the corresponding Hessian structures.
References:
[1] Amari, S., Armstrong, J.: Curvature of Hessian manifolds. Differential Geom. Appl. 33 (2014), 1–12. DOI 10.1016/j.difgeo.2014.01.001 | MR 3183362
[2] Banos, B.: Integrable geometries and Monge-Ampèere equations. arXiv: Differential Geometry (2006).
[3] Banos, B.: Monge-Ampère equations and generalized complex geometry –the two-dimensional case. J. Geom. Phys. 57 (3) (2007), 841–853. DOI 10.1016/j.geomphys.2006.06.005 | MR 2275194
[4] Banos, B.: Complex solutions of Monge-Ampère equations. J. Geom. Phys. 61 (2011), no. 11, 2187–2198. DOI 10.1016/j.geomphys.2011.06.019 | MR 2827118
[5] Banos, B.: Complex solutions of Monge-Ampère equations. J. Geom. Phys. 61 (2011), no. 11, 2187–2198. DOI 10.1016/j.geomphys.2011.06.019 | MR 2827118
[6] Banos, B., Rubtsov, V., Roulstone, I.: Monge–Ampère structures and the geometry of incompressible flows. J. Phys A 49 (2016). DOI 10.1088/1751-8113/49/24/244003 | MR 3512079
[7] Delahaies, S.: Complex and contact geometry in geophysical fluid dynamics. Ph.D. thesis, 01 2009. MR 3697449
[8] Kosmann-Schwarzbach, Y., Rubtsov, V.: Compatible structures on Lie algebroids and Monge-Ampère operators. Acta Appl. Math. 109 (2010), no. 1, 101–135. DOI 10.1007/s10440-009-9444-2 | MR 2579885
[9] Kushner, A., Lychagin, V., Rubtsov, V.: Contact geometry and nonlinear differential equations. Encyclopedia Math. Appl., Cambridge University Press, 2006. MR 2352610
[10] Lychagin, V.V.: Contact geometry and non-llnear second-order differential equations. Russian Math. Surveys 34 (1979), no. 1, 149–180. DOI 10.1070/RM1979v034n01ABEH002873 | MR 0525652
[11] Lychagin, V.V., Roubtsov, V.: Monge–Ampère Grassmannians, characteristic classes and all that. pp. 233–257, Springer International Publishing, Cham, 2019. MR 3932304
[12] Lychagin, V.V., Rubtsov, V.N., Chekalov, I.V.: A classification of Monge-Ampère equations. Ann. Sci. Éc. Norm. Supér. (4) Ser. 4, 26 (1993), no. 3, 281–308 (en). MR 94c:58229 MR 1222276
[13] Roulstone, I., Banos, B., Gibbon, J.D., Roubtsov, V.N.: Kähler geometry and Burgers’ vortices. (2009).
[14] Rubtsov, V., Roulstone, I.: Holomorphic structures in hydrodynamical models of nearly geostrophic flow. R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci. 457 (2001), 1519–1531. DOI 10.1098/rspa.2001.0779 | MR 1851013
[15] Rubtsov, V. N., Roulstone, I.: Examples of quaternionic and Kähler structures in Hamiltonian models of nearly geostrophic flow. J. Phys. A 30 (1997), no. 4, L63–L68. DOI 10.1088/0305-4470/30/4/004 | MR 1457975
[16] Rubtsov, Volodya: Geometry of Monge-Ampère structures. pp. 95–156, Springer International Publishing, Cham, 2019. MR 3932299
[17] Shima, Hirohiko: The geometry of Hessian structures. World Scientific, 2007. MR 2293045
[18] Totaro, B.: The curvature of a Hessian metric. Internat. J. Math. 15 (2004), no. 04, 369–391. DOI 10.1142/S0129167X04002338 | MR 2069684
Partner of
EuDML logo