[1] Abe, K., Higashimori, N., Kubo, M., Fujiwara, H., Iso, Y.:
A remark on the Courant-Friedrichs-Lewy condition in finite difference approach to PDE's. Adv. Appl. Math. Mech. 6 (2014), 693-698.
DOI 10.4208/aamm.2014.5.s6 |
MR 3244370
[2] Ahmad, M., Ismail, K. A., Mat, F.: Impact models and coefficient of restitution: A review. ARPN J. Eng. Appl. Sci. 11 (2016), 6549-6555.
[4] Bathe, K.-J.: Finite Element Procedures. Prentice Hall, New Jersey (2009).
[7] Courant, R., Friedrichs, K., Lewy, H.:
Über die partiellen Differenzengleichungen der mathematischen Physik. Math. Ann. 100 (1928), 32-74 German \99999JFM99999 54.0486.01.
DOI 10.1007/BF01448839 |
MR 1512478
[8] Duriez, C., Andriot, C., Kheddar, A.:
Signorini's contact model for deformable objects in haptic simulations. International Conference on Intelligent Robots and Systems (IROS) IEEE, Piscataway (2004), 3232-3237.
DOI 10.1109/IROS.2004.1389915
[11] Francavilla, A., Zienkiewicz, O. C.:
A note on numerical computation of elastic contact problems. Int. J. Numer. Methods Eng. 9 (1975), 913-924.
DOI 10.1002/nme.1620090410 |
MR 3618552
[12] (ed.), J. O. Halquist: LS-DYNA Theoretical Manual. Livermore Software Technology Corporation, Livermore (2006).
[16] Hughes, T. J. R., Taylor, R. L., Kanoknukulchai, W.:
A finite element method for large displacement contact and impact problems. Formulations and Computational Algorithms in Finite Element Analysis M.I.T. Press, Cambridge (1977), 468-495.
MR 0475196
[17] Kloosterman, G., Damme, R. M. J. van, Boogaard, A. H. van der, Huétink, J.:
A geometrical-based contact algorithm using a barrier method. Int. J. Numer. Methods Eng. 51 (2001), 865-882.
DOI 10.1002/nme.209 |
MR 1837060 |
Zbl 1039.74046
[18] Kocur, G. K., Harmanci, Y. E., Chatzi, E., Steeb, H., Markert, B.:
Automated identification of the coefficient of restitution via bouncing ball measurement. Arch. Appl. Mech. 91 (2021), 47-60.
DOI 10.1007/s00419-020-01751-x
[20] Li, J., Yu, K., Li, X.:
A novel family of controllably dissipative composite integration algorithms for structural dynamic analysis. Nonlinear Dyn. 96 (2019), 2475-2507.
DOI 10.1007/s11071-019-04936-4
[21] Lions, J.-L.:
Quelques méthodes de résolution des problèmes aux limites non linéaires. Dunod, Paris (1969), French.
MR 0259693 |
Zbl 0189.40603
[22] Liu, Y. F., Li, J., Zhang, Z. M., Hu, X. H., Zhang, W. J.:
Experimental comparison of five friction models on the same test-bed of the micro stick-slip motion system. Mech. Sci. 6 (2015), 15-28.
DOI 10.5194/ms-6-15-2015
[23] Na, J., Chen, Q., Ren, X.:
Adaptive Identification and Control of Uncertain Systems with Non-Smooth Dynamics. Emerging Methodologies and Applications in Modelling, Identification and Control. Academic Press, Amsterdam (2018).
DOI 10.1016/C2016-0-04487-X |
Zbl 1415.93006
[24] Němec, I., Štekbauer, H., Vaněčková, A., Vlk, Z.:
Explicit and implicit method in nonlinear seismic analysis. Dynamics of Civil Engineering and Transport Structures and Wind Engineering -- DYN-WIND'2017 MATEC Web of Conferences 107. EDP Sciences, Paris (2017), Article ID 66, 8 pages.
DOI 10.1051/matecconf/201710700066
[26] Rek, V., Vala, J.: On a distributed computing platform for a class of contact-impact problems. Seminar on Numerical Analysis (SNA'21) Institute of Geonics CAS, Ostrava (2021), 64-67.
[27] Rektorys, K.:
The Method of Discretization in Time and Partial Differential Equations. Mathematics and Its Applications (East European Series) 4. D. Reidel, Dordrecht (1982).
MR 0689712 |
Zbl 0505.65029
[30] Schwab, A. L.: On the interpretation of the Lagrange multipliers in the constraint formulation of contact problems; or why are some multipliers always zero?. Proc. ASME International Design Engineering Technical Conferences & Computers and Information in Engineering Conference IDETC/CIE ASME, New York (2014), 1-5.
[31] Sewerin, F., Papadopoulos, P.:
On the finite element solution of frictionless contact problems using an exact penalty approach. Comput. Methods Appl. Mech. Eng. 368 (2020), Article ID 113108, 24 pages.
DOI 10.1016/j.cma.2020.113108 |
MR 4114140 |
Zbl 07337970
[35] Štekbauer, H., Lang, R., Zeiner, M., Burkart, D.: A correct and efficient algorithm for impacts of bodies. Seminar on Numerical Analysis (SNA'21) Institute of Geonics CAS, Ostrava (2021), 55-58.
[36] Štekbauer, H., Němec, I.:
Modeling of welded connections using Lagrange multipliers. AIP Conf. Proc. 2293 (2020), Article ID 340013, 4 pages.
DOI 10.1063/5.0031396
[37] Štekbauer, H., Vlk, Z.:
The modification of a node-to-node algorithm for the modelling of beam connections in RFEM and SCIA using the explicit method. Dynamics of Civil Engineering and Transport Structures and Wind Engineering -- DYN-WIND'2017 MATEC Web of Conferences 107. EDP Sciences, Paris (2017), Article ID 60, 6 pages.
DOI 10.1051/matecconf/201710700060
[38] Vala, J., Kozák, V.:
Computational analysis of quasi-brittle fracture in fibre reinforced cementitious composites. Theor. Appl. Fracture Mech. 107 (2020), Article ID 102486, 8 pages.
DOI 10.1016/j.tafmec.2020.102486
[44] Xu, D., Hjelmstad, K. D.:
A new node-to-node approach to contact/impact problems for two dimensional elastic solids subject to finite deformation. Newmark Structural Laboratory Report Series University of Illinois, Urbana-Champaign (2008), Available at
http://hdl.handle.net/2142/5318\kern0pt
[46] Yang, B., Laursen, T. A., Meng, X.:
Two dimensional mortar contact methods for large deformation frictional sliding. Int. J. Numer. Methods Eng. 62 (2005), 1183-1225.
DOI 10.1002/nme.1222 |
MR 2120292 |
Zbl 1161.74497
[48] Zavarise, G., Lorenzis, L. de:
A modified node-to-segment algorithm passing the contact patch test. Int. J. Numer. Methods Eng. 79 (2009), 379-416.
DOI 10.1002/nme.2559 |
Zbl 1171.74455
[49] Zhong, Z.-H.:
Finite Element Procedures for Contact-Impact Problems. Oxford University Press, Oxford (1993).
MR 1206475