[1] Barrenechea, G. R., John, V., Knobloch, P.:
A local projection stabilization finite element method with nonlinear crosswind diffusion for convection-diffusion-reaction equations. ESAIM, Math. Model. Numer. Anal. 47 (2013), 1335-1366.
DOI 10.1051/m2an/2013071 |
MR 3100766 |
Zbl 1303.65082
[2] Bastl, B., Brandner, M., Egermaier, J., Horníková, H., Michálková, K., Turnerová, E.:
Numerical simulation of lid-driven cavity flow by isogeometric analysis. Acta Polytech., Pr. ČVUT Praha 61 (2021), 33-48.
DOI 10.14311/AP.2021.61.0033
[3] Bastl, B., Brandner, M., Egermaier, J., Michálková, K., Turnerová, E.:
IgA-Based Solver for turbulence modelling on multipatch geometries. Adv. Eng. Softw. 113 (2017), 7-18.
DOI 10.1016/j.advengsoft.2017.06.012
[4] Bazilevs, Y., Calo, V. M., Cottrell, J. A., Hughes, T. J. R., Reali, A., Scovazzi, G.:
Variational multiscale residual-based turbulence modeling for large eddy simulation of incompressible flows. Comput. Methods Appl. Mech. Eng. 197 (2007), 173-201.
DOI 10.1016/j.cma.2007.07.016 |
MR 2361475 |
Zbl 1169.76352
[5] Bazilevs, Y., Calo, V. M., Tezduyar, T. E., Hughes, T. J. R.:
$YZ\beta$ discontinuity capturing for advection-dominated processes with application to arterial drug delivery. Int. J. Numer. Methods Fluids 54 (2007), 593-608.
DOI 10.1002/fld.1484 |
MR 2333001 |
Zbl 1207.76049
[7] Brooks, N. A., Hughes, T. J. R.:
Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations. Comput. Methods Appl. Mech. Eng. 32 (1982), 199-259.
DOI 10.1016/0045-7825(82)90071-8 |
MR 0679322 |
Zbl 0497.76041
[9] Burman, E., Ern, A.:
Nonlinear diffusion and discrete maximum principle for stabilized Galerkin approximations of the convection-diffusion-reaction equation. Comput. Methods Appl. Mech. Eng. 191 (2002), 3833-3855 \99999DOI99999 10.1016/S0045-7825(02)00318-3 .
MR 1912655 |
Zbl 1101.76354
[10] Collier, N., Pardo, D., Dalcin, L., Paszynski, M., Calo, V. M.:
The cost of continuity: A study of the performance of isogeometric finite elements using direct solvers. Comput. Methods Appl. Mech. Eng. 213-216 (2012), 353-361 \99999DOI99999 10.1016/j.cma.2011.11.002 .
MR 2880524 |
Zbl 1243.65137
[12] Donea, J., Huerta, A.: Finite Element Methods for Flow Problems. John Wiley & Sons, Chichester (2003),\99999DOI99999 10.1002/0470013826 .
[13] Driver, D. M., Seegmiller, H. L.:
Features of a reattaching turbulent shear layer in divergent channel flow. AIAA J. 23 (1985), 163-171.
DOI 10.2514/3.8890
[16] Hiemstra, R. R., Sangalli, G., Tani, M., Calabrò, F., Hughes, T. J. R.:
Fast formation and assembly of finite element matrices with application to isogeometric linear elasticity. Comput. Methods Appl. Mech. Eng. 355 (2019), 234-260.
DOI 10.1016/j.cma.2019.06.020 |
MR 3975736 |
Zbl 1441.74244
[17] Hsu, M.-C., Bazilevs, Y., Calo, V. M., Tezduyar, T. E., Hughes, T. J. R.:
Improving stability of stabilized and multiscale formulations in flow simulations at small time steps. Comput. Methods Appl. Mech. Eng. 199 (2010), 828-840.
DOI 10.1016/j.cma.2009.06.019 |
MR 2581346 |
Zbl 1406.76028
[18] Hughes, T. J. R., Cottrell, J. A., Bazilevs, Y.:
Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Comput. Methods Appl. Mech. Eng. 194 (2005), 4135-4195 \99999DOI99999 10.1016/j.cma.2004.10.008 .
MR 2152382 |
Zbl 1151.74419
[19] Hughes, T. J. R., Reali, A., Sangalli, G.:
Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of $p$-method finite elements with $k$-method NURBS. Comput. Methods Appl. Mech. Eng. 197 (2008), 4104-4124 \99999DOI99999 10.1016/j.cma.2008.04.006 .
MR 2463659 |
Zbl 1194.74114
[21] John, V., Knobloch, P.:
On spurious oscillations at layers diminishing (SOLD) methods for convection-diffusion equations. II. Analysis for $P_1$ and $Q_1$ finite elements. Comput. Methods Appl. Mech. Eng. 197 (2008), 1997-2014.
DOI 10.1016/j.cma.2007.12.019 |
MR 2417168 |
Zbl 1194.76122
[23] Kim, J.-Y., Ghajar, A. J., Tang, C., Foutch, G. L.:
Comparison of near-wall treatment methods for high Reynolds number backward-facing step flow. Int. J. Comput. Fluid Dyn. 19 (2005), 493-500.
DOI 10.1080/10618560500502519 |
Zbl 1184.76682
[24] Kuzmin, D., Mierka, O., Turek, S.:
On the implementation of the $k-\epsilon$ turbulence model in incompressible flow solvers based on a finite element discretization. Int. J. Comput. Sci. Math. 1 (2007), 193-206.
DOI 10.1504/IJCSM.2007.016531 |
MR 2396378 |
Zbl 1185.76706
[26] Li, R., Wu, Q., Zhu, S.:
Proper orthogonal decomposition with SUPG-stabilized isogeometric analysis for reduced order modelling of unsteady convection-dominated convection-diffusion-reaction problems. J. Comput. Phys. 387 (2019), 280-302.
DOI 10.1016/j.jcp.2019.02.051 |
MR 3924459 |
Zbl 1452.76094
[27] Mantzaflaris, A., Jüttler, B.:
G+Smo (Geometry plus Simulation Modules) v0.8.1. Available at
https://github.com/gismo (2018).
[28] Moukalled, F., Mangani, L., Darwish, M.:
The Finite Volume Method in Computational Fluid Dynamics: An Advanced Introduction with OpenFOAM and Matlab. Fluid Mechanics and Its Applications 113. Springer, Cham (2016).
DOI 10.1007/978-3-319-16874-6 |
MR 3382201 |
Zbl 1329.76001
[29] Nazarov, M.:
Convergence of a residual based artificial viscosity finite element method. Comput. Math. Appl. 65 (2013), 616-626 \99999DOI99999 10.1016/j.camwa.2012.11.003 .
MR 3011445 |
Zbl 1319.65098
[30] Nazarov, M., Hoffman, J.:
Residual-based artificial viscosity for simulation of turbulent compressible flow using adaptive finite element methods. Int. J. Numer. Methods Fluids 71 (2013), 339-357 \99999DOI99999 10.1002/fld.3663 .
MR 3008293 |
Zbl 1430.76314
[31] Nichols, R. H.: Turbulence Models and Their Application to Complex Flows: Revision 4.01. University of Alabama at Birmingham, Birmingham (2014).
[32] Nordanger, K., Holdahl, R., Kvarving, A. M., Rasheed, A., Kvamsdal, T.:
Implementation and comparison of three isogeometric Navier-Stokes solvers applied to simulation of flow past a fixed 2D NACA0012 airfoil at high Reynolds number. Comput. Methods Appl. Mech. Eng. 284 (2015), 664-688.
DOI 10.1016/j.cma.2014.10.033 |
MR 3310302 |
Zbl 1425.65118
[36] Roos, H.-G., Stynes, M., Tobiska, L.:
Robust Numerical Methods for Singularly Perturbed Differential Equations: Convection-diffusion-reaction and Flow Problems. Springer Series in Computational Mathematics. Springer, Berlin (2008).
DOI 10.1007/978-3-540-34467-4 |
MR 2454024 |
Zbl 1155.65087
[37] Shakib, F., Hughes, T. J. R.:
A new finite element formulation for computational fluid dynamics. IX. Fourier analysis of space-time Galerkin/least-squares algorithms. Comput. Methods Appl. Mech. Eng. 87 (1991), 35-58.
DOI 10.1016/0045-7825(91)90145-V |
MR 1103416 |
Zbl 0760.76051
[39] Takizawa, K., Tezduyar, T. E., Otoguro, Y.:
Stabilization and discontinuity-capturing parameters for space-time flow computations with finite element and isogeometric discretizations. Comput. Mech. 62 (2018), 1169-1186.
DOI 10.1007/s00466-018-1557-x |
MR 3876285 |
Zbl 1462.76128
[41] Versteeg, H. K., Malalasekera, W.: An Introduction to Computational Fluid Dynamics: The Finite Volume Method. Pearson Education, Harlow (2007).
[42] Wilcox, D. C.: Turbulence Modeling for CFD. DCW Industries, La Canada (2006).
[43] Zhang, H., Craft, T., Iacovides, H.:
The formulation of the RANS equations for hypersonic turbulent flows. Proceedings of the 5th World Congress on Mechanical, Chemical, and Material Engineering (MCM'19) Avestia Publishing, Orléans (2019), Article ID 172, 9 pages.
DOI 10.11159/htff19.172