[1] Bastl, B., Brandner, M., Egermaier, J., Horníková, H., Michálková, K., Turnerová, E.:
Numerical simulation of lid-driven cavity flow by isogeometric analysis. Acta Polytech., Pr. ČVUT Praha 61 (2021), 33-48.
DOI 10.14311/AP.2021.61.0033
[2] Bastl, B., Brandner, M., Egermaier, J., Michálková, K., Turnerová, E.:
Isogeometric analysis for turbulent flow. Math. Comput. Simul. 145 (2018), 3-17.
DOI 10.1016/j.matcom.2016.05.010 |
MR 3725796 |
Zbl 07316162
[4] Benzi, M., Olshanskii, M. A., Wang, Z.:
Modified augmented Lagrangian preconditioners for the incompressible Navier-Stokes equations. Int. J. Numer. Methods Fluids 66 (2011), 486-508.
DOI 10.1002/fld.2267 |
MR 2827781 |
Zbl 1421.76152
[6] Elman, H., Howle, V. E., Shadid, J., Shuttleworth, R., Tuminaro, R.:
Block preconditioners based on approximate commutators. SIAM J. Sci. Comput. 27 (2006), 1651-1668.
DOI 10.1137/040608817 |
MR 2206507 |
Zbl 1100.65042
[8] Farrell, P. E., Mitchell, L., Wechsung, F.:
An augmented Lagrangian preconditioner for the 3D stationary incompressible Navier-Stokes equations at high Reynolds number. SIAM J. Sci. Comput. 41 (2019), A3073--A3096 \99999DOI99999 10.1137/18M1219370 .
DOI 10.1137/18M1219370 |
MR 4016136 |
Zbl 1448.65261
[10] Horníková, H., Vuik, C., Egermaier, J.:
A comparison of block preconditioners for isogeometric analysis discretizations of the incompressible Navier-Stokes equations. Int. J. Numer. Methods Fluids 93 (2021), 1788-1815 \99999DOI99999 10.1002/fld.4952 .
MR 4252626
[13] Mantzaflaris, A., Jüttler, B.:
G+Smo (Geometry plus Simulation modules) v0.8.1. Available at
http://github.com/gismo (2018).
[16] Tielen, R., Möller, M., Göddeke, D., Vuik, C.:
$p$-multigrid methods and their comparison to $h$-multigrid methods within isogeometric analysis. Comput. Methods Appl. Mech. Eng. 372 (2020), Article ID 113347, 27 pages.
DOI 10.1016/j.cma.2020.113347 |
MR 4138320 |
Zbl 07337843
[17] Trottenberg, U., Oosterlee, C. W., Schüller, A.:
Multigrid. Academic Press, San Diego (2001).
MR 1807961 |
Zbl 0976.65106