Previous |  Up |  Next

Article

Full entry | Fulltext not available (moving wall 24 months)      Feedback
Keywords:
isogeometric analysis; augmented Lagrangian preconditioner; Navier-Stokes equations
Summary:
In this paper, we deal with the optimal choice of the parameter $\gamma $ for augmented Lagrangian preconditioning of GMRES method for efficient solution of linear systems obtained from discretization of the incompressible Navier-Stokes equations. We consider discretization of the equations using the B-spline based isogeometric analysis approach. We are interested in the dependence of the convergence on the parameter $\gamma $ for various problem parameters (Reynolds number, mesh refinement) and especially for various isogeometric discretizations (degree and interelement continuity of the B-spline discretization bases). The idea is to be able to determine the optimal value of $\gamma $ for a problem that is relatively cheap to compute and, based on this value, predict suitable values for other problems, e.g., with finer mesh, different discretization, etc. The influence of inner solvers (direct or iterative based on multigrid method) is also discussed.
References:
[1] Bastl, B., Brandner, M., Egermaier, J., Horníková, H., Michálková, K., Turnerová, E.: Numerical simulation of lid-driven cavity flow by isogeometric analysis. Acta Polytech., Pr. ČVUT Praha 61 (2021), 33-48. DOI 10.14311/AP.2021.61.0033
[2] Bastl, B., Brandner, M., Egermaier, J., Michálková, K., Turnerová, E.: Isogeometric analysis for turbulent flow. Math. Comput. Simul. 145 (2018), 3-17. DOI 10.1016/j.matcom.2016.05.010 | MR 3725796 | Zbl 07316162
[3] Benzi, M., Olshanskii, M. A.: An augmented Lagrangian-based approach to the Oseen problem. SIAM J. Sci. Comput. 28 (2006), 2095-2113. DOI 10.1137/050646421 | MR 2272253 | Zbl 1126.76028
[4] Benzi, M., Olshanskii, M. A., Wang, Z.: Modified augmented Lagrangian preconditioners for the incompressible Navier-Stokes equations. Int. J. Numer. Methods Fluids 66 (2011), 486-508. DOI 10.1002/fld.2267 | MR 2827781 | Zbl 1421.76152
[5] Cottrell, J. A., Hughes, T. J. R., Bazilevs, Y.: Isogeometric Analysis: Toward Integration of CAD and FEA. John Wiley & Sons, Hoboken (2009). DOI 10.1002/9780470749081 | MR 3618875 | Zbl 1378.65009
[6] Elman, H., Howle, V. E., Shadid, J., Shuttleworth, R., Tuminaro, R.: Block preconditioners based on approximate commutators. SIAM J. Sci. Comput. 27 (2006), 1651-1668. DOI 10.1137/040608817 | MR 2206507 | Zbl 1100.65042
[7] Elman, H., Silvester, D. J., Wathen, A. J.: Finite Elements and Fast Iterative Solvers: With Applications in Incompressible Fluid Dynamics. Numerical Mathematics and Scientific Computation. Oxford University Press, Oxford (2014). DOI 10.1093/acprof:oso/9780199678792.001.0001 | MR 3235759 | Zbl 1304.76002
[8] Farrell, P. E., Mitchell, L., Wechsung, F.: An augmented Lagrangian preconditioner for the 3D stationary incompressible Navier-Stokes equations at high Reynolds number. SIAM J. Sci. Comput. 41 (2019), A3073--A3096 \99999DOI99999 10.1137/18M1219370 . DOI 10.1137/18M1219370 | MR 4016136 | Zbl 1448.65261
[9] Guennebaud, G., Jacob, B.: Eigen v3. Available at http://eigen.tuxfamily.org (2010).
[10] Horníková, H., Vuik, C., Egermaier, J.: A comparison of block preconditioners for isogeometric analysis discretizations of the incompressible Navier-Stokes equations. Int. J. Numer. Methods Fluids 93 (2021), 1788-1815 \99999DOI99999 10.1002/fld.4952 . MR 4252626
[11] Hughes, T. J. R., Cottrell, J. A., Bazilevs, Y.: Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Comput. Methods Appl. Mech. Eng. 194 (2005), 4135-4195. DOI 10.1016/j.cma.2004.10.008 | MR 2152382 | Zbl 1151.74419
[12] Kay, D., Loghin, D., Wathen, A.: A preconditioner for the steady-state Navier-Stokes equations. SIAM J. Sci. Comput. 24 (2002), 237-256. DOI 10.1137/S106482759935808X | MR 1924423 | Zbl 1013.65039
[13] Mantzaflaris, A., Jüttler, B.: G+Smo (Geometry plus Simulation modules) v0.8.1. Available at http://github.com/gismo (2018).
[14] Murphy, M. F., Golub, G. H., Wathen, A. J.: A note on preconditioning for indefinite linear systems. SIAM J. Sci. Comput. 21 (2000), 1969-1972. DOI 10.1137/S1064827599355153 | MR 1762024 | Zbl 0959.65063
[15] Silvester, D., Elman, H., Kay, D., Wathen, A.: Efficient preconditioning of the linearized Navier-Stokes equations for incompressible flow. J. Comput. Appl. Math. 128 (2001), 261-279. DOI 10.1016/S0377-0427(00)00515-X | MR 1820877 | Zbl 0983.76051
[16] Tielen, R., Möller, M., Göddeke, D., Vuik, C.: $p$-multigrid methods and their comparison to $h$-multigrid methods within isogeometric analysis. Comput. Methods Appl. Mech. Eng. 372 (2020), Article ID 113347, 27 pages. DOI 10.1016/j.cma.2020.113347 | MR 4138320 | Zbl 07337843
[17] Trottenberg, U., Oosterlee, C. W., Schüller, A.: Multigrid. Academic Press, San Diego (2001). MR 1807961 | Zbl 0976.65106
[18] Rehman, M. ur, Vuik, C., Segal, G.: SIMPLE-type preconditioners for the Oseen problem. Int. J. Numer. Methods Fluids 61 (2009), 432-452. DOI 10.1002/fld.1957 | MR 2571325 | Zbl 1171.76033
[19] Vuik, C., Saghir, A., Boerstoel, G. P.: The Krylov accelerated SIMPLE(R) method for flow problems in industrial furnaces. Int. J. Numer. Methods Fluids 33 (2000), 1027-1040. DOI 10.1002/1097-0363(20000815)33:7<1027::AID-FLD41>3.0.CO;2-S | Zbl 0960.76054
Partner of
EuDML logo