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Abstract. We construct two particular solutions of the full Euler system which emanate
from the same initial data. Our aim is to show that the convex combination of these two
solutions form a measure-valued solution which may not be approximated by a sequence of
weak solutions. As a result, the weak* closure of the set of all weak solutions, considered
as parametrized measures, is not equal to the space of all measure-valued solutions. This
is in stark contrast with the incompressible Euler equations.

Keywords: measure-valued solution; compressible Euler system

MSC 2020 : 35B99, 35Q31

1. Introduction

In the context of fluid dynamics, measure-valued solutions were first studied by

DiPerna and Majda [8], who developed an appropriate mathematical framework and

showed existence for such solutions of the incompressible Euler equations. Measure-

valued solutions describe the one-point statistics of a fluid, i.e., they give the prob-

ability distribution of the fluid velocity (and other state variables like density or

temperature) at a given point in time and space. If we are willing to accept such

a probabilistic description rather than a deterministic one (which would, of course,

contain more information), then we can easily obtain a solution for any initial data,

bypassing the notorious problem of non-interchangeability of weak limits and non-

linearities.

Measure-valued solutions are sometimes thought of as a “cheap way out” of the

fundamental lack of compactness for inviscid fluid models, and are criticized as not
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containing enough interesting information. Yet, in recent years, the concept has

been intensely studied again, as it turned out to have several merits after all: First,

measure-valued solutions, despite representing a very weak notion of solution, enjoy

a weak-strong stability property that entails important consequences for singular

limits, numerical approximation, and long-time behaviour; this property is known

for many systems of fluid mechanics, including the incompressible [2], isentropic

compressible [13], and full compressible [4] Euler systems, the isentropic compress-

ible Navier-Stokes equations [9], and the Navier-Stokes-Fourier equations [5], see

also the survey [19]. One should remark that weak-strong uniqueness holds only

for admissible measure-valued solutions, which comply with appropriate energy or

entropy inequalities.

Motivated by numerical simulations, Fjordholm et al. [10] argued that measure-

valued solutions provide for a more suitable notion of solution than weak (distri-

butional) solutions; indeed, the numerical computation of unstable shear flows with

randomly perturbed initial data yields highly unpredictable results on the level of

weak solutions, but apparently stable and regular behavior on the measure-valued

level. This phenomenon is of course very plausible in the light of phenomenological

turbulence theory [11].

Measure-valued solutions seem like a vast generalization of weak solutions, but

are they really? Surprisingly, the answer is ‘no’ for the incompressible Euler equa-

tions [18]. Indeed, any measure-valued solution is weakly approximated by a sequence

of weak solutions (and if the measure is admissible, then the approximating sequence

can also be chosen to consist of admissible weak solutions), or in other words: The

set of Dirac parametrized measures is weakly* dense in the set of all measure-valued

solutions. One might thus say that the notion of measure-valued solution is just

a topological closure, but not a substantial extension, of the more classical concept

of weak solution.

Looking at [18] from a different angle, one could view the result as an instance of

a characterization of Young measures generated by sequences with specific properties

(viz. being a solution of the incompressible Euler equations). The most classical

result of this kind is the characterization of gradient Young measures [14], [15],

where not every Young measure whose barycenter is a gradient is itself generated by

a sequence of gradients. This already indicates that the situation for incompressible

Euler is rather unusual.

The fact that every measure-valued solution of the incompressible Euler equations

is generable, is related to the wave cone for the corresponding linear constraint; in-

deed, the wave cone in this case is the whole space. It turns out that this is no longer

the case for compressible models. In [7], the wave cone for the isentropic compress-

ible Euler system is determined (and it is not the whole space), and a preliminary
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application to the generability of measure-valued solutions is given. This result was

recently extended in [12] to yield an admissible measure-valued solution with atomic

initial data that is not recovered from a sequence of weak solutions. The result relies

on a refined rigidity lemma (see Theorem 3.1 below) and the construction of ‘wild’ so-

lutions for certain Riemann data in [6]. It is shown, in addition, that the constructed

measure-valued solution does not arise as a vanishing viscosity limit, and it is argued

that such measure-valued solutions, therefore, should be discarded as unphysical.

The aim of the present contribution is to extend the result from [12] to the full Eu-

ler system. Our main result (Theorem 3.2 below) states that there exists a measure-

valued solution to the full Euler system with non-constant entropy which is not gen-

erated by any sequence of weak solutions. Importantly, our measure-valued solution

has atomic (deterministic) initial data. As in the isentropic case, our result means

that there are measure-valued solutions that should be regarded as unphysical. In

applications, however, measure-valued solutions are usually obtained from suitable

approximate solutions such as numerical schemes or viscosity limits, and measure-

valued solutions arising in such a way are not expected to behave as strangely as the

one constructed in this note.

This contribution follows a similar strategy as [12], but it relies on the convex

integration construction from [16] for the full Euler system rather than the isen-

tropic construction from [6]. We have tried to keep the presentation as concise as

possible; this means that we only briefly recall the relevant facts from [12], [16] with

no extensive discussion. Moreover, our result could be extended in various straight-

forward ways to include the admissibility condition (which is actually satisfied in

our construction, since the scheme in [16] produces entropy solutions), concentration

measures (which we could simply take to be zero, whence any hypothetical generat-

ing sequence would automatically have equi-integrable non-linearities, cf. [12], proof

of Theorem 4.13), or viscosity limits. Although the equation is considered in two

space dimensions, the validity of the result in higher dimensions can be obtained

simply by a trivial expansion. We have chosen, however, to keep this note as short

and simple as possible.

2. Preliminaries

Let T > 0. We consider the following system on time-space [0, T ]× R2:

∂t̺+ divx(̺v) = 0,(2.1)

∂t(̺v) + divx(̺v ⊗ v) +∇p(̺, θ) = 0,

∂t

(1

2
̺|v|2 + ̺e(̺, θ)

)

+ divx

((1

2
̺|v|2 + ̺e(̺, θ)

)

v

)

+ divx(p(̺, θ)v) = 0
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with unknowns ̺ : [0, T ]×Ω → R
+
0 , v = (v, u) : [0, T ]×Ω → R2 and θ : [0, T ]×Ω →

R
+
0 . The functions e and p are interrelated through the Gibbs law, which gives rise

also to an entropy—a function s(̺, θ) such that

θDs(̺, θ) = De(̺, θ) + p(̺, θ)D
(1

̺

)

,

where D stands for the gradient with respect to ̺ and θ. Throughout this paper we

consider an ideal gas, i.e.

p(̺, θ) = ̺θ, e(̺, θ) = cvθ, s(̺, θ) = log
(θcv

̺

)

for some cv > 0

and for simplicity, we assume cv = 1. We rewrite (2.1) into conservative variables ̺,

m = ̺v, E = 1
2̺|v|2 + ̺e(̺, θ). Our choice of state variables gives p = E − 1

2m
2/̺

and thus we get

∂t̺+ divxm = 0,(2.2)

∂tm+ divx

(

m⊗m

̺
+ I

(

E − 1

2

m
2

̺

))

= 0,

∂tE + div
((

2E − 1

2

m
2

̺

)

m

̺

)

= 0,

where I denotes the (2 × 2) identity matrix. Furthermore, we may rewrite it as

a linear differential system

∂t̺+ divxm = 0,(2.3)

∂tm+ divx U +∇E = 0,

∂tE + divx r = 0

with the following constraints:

(2.4) U =
m⊗m

̺
− 1

2

m
2

̺
I,

r =
((

2E − 1

2

m
2

̺

)

m

̺

)

.

We recall that according to the definition, U is a traceless symmetric matrix and

thus system (2.3) may be rewritten as

div









̺ m1 m2

m1 U11 + E U12

m2 U12 −U11 + E

E r1 r2









= 0.

Here div stands for the divergence over the time-space variables (t, x).
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Definition 2.1. We say that a family of probability measures ν := νt,x ∈
L∞
w∗([0, T ]×R

2,P(R+
0 ×R

2 ×R
+
0 )) is a measure-valued solution to (2.1) with initial

data (̺0,m0, E0) if

∫ T

0

∫

R2

̺(t, x)∂tϕ(t, x) +m(t, x) · ∇ϕ(t, x) dxdt+

∫

R2

̺0(x)ϕ(0, x) dx = 0

for all ϕ ∈ C∞
c ([0, T )× R2),

∫ T

0

∫

R2

m(t, x) · ∂tϕ(t, x) +
〈

νt,x,
ξm ⊗ ξm

ξ̺
− I

(

ξE − 1

2

ξ2m
ξ̺

)〉

: ∇ϕ(t, x) dxdt

+

∫

R2

m
0(x) · ϕ(0, x) dx = 0

for all ϕ ∈ C∞
c ([0, T )× R2)2,

∫ T

0

∫

R2

E(t, x)∂tϕ(t, x) +
〈

νt,x,
(

2ξE − 1

2

ξ2m
ξ̺

)ξm
ξ̺

〉

· ∇ϕ(t, x) dxdt

+

∫

R2

E0(x)ϕ(0, x) dx = 0

for all ϕ ∈ C∞
c ([0, T )× R2).

Here ξ̺ ∈ R
+
0 , ξm ∈ R2 and ξE ∈ R

+
0 are dummy variables for ̺, m and E,

meaning that

̺(t, x) =

∫ ∞

0

ξ̺ dνt,x, m(t, x) =

∫

R2

ξm dνt,x, E =

∫ ∞

0

ξE dνt,x

and we use the notation

〈νt,x, f(ξ̺, ξm, ξE)〉 =
∫

R
+

0
×R2×R

+

0

f(ξ̺, ξm, ξE) dνt,x.

For the existence of a measure-valued solution, one needs an extended notion

including concentration effects; if these are taken into account, then the existence of

measure-valued solutions is known owing to Březina [3]. His definition of measure-

valued solution is also slightly different from ours in that he used the renormalized

entropy balance and the total energy balance instead of the energy balance. In any

case, every weak solution (̺,m, E) is also a measure valued solution (in the sense of

Definition 2.1) with νt,x = δ̺(t,x) ⊗ δ
m(t,x) ⊗ δE(t,x). Thus, the existence of infinitely

many weak solutions for certain initial data exhibited in [1] and in [16] shows a fortiori

the existence of non-unique measure-valued solutions for these data.
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As an immediate consequence of the definition, we obtain that every convex com-

bination of two measure valued solutions is also a measure-valued solution, that is,

if ν, µ are two measure-valued solutions, then so is λν + (1 − λ)µ for any λ ∈ [0, 1].

Our aim is to prove that there exists a measure valued solution to (2.1) which

cannot be obtained as a limit of weak solutions. To make this precise, we say that

a sequence (zn) : Ω → Rd of measurable functions generates the parametrized mea-

sure (νx)x∈Ω if

f(zn) ⇀ 〈ν, f〉 weakly in L1(Ω)

for all continuous functions f : R
d → R for which (f(zn)) is equi-integrable.

We will take advantage of the following theorem proved in [7]:

Theorem 2.2. Let Ω ⊂ RN be a Lipschitz and bounded domain, 1 6 p < ∞,
and A a linear operator of the form

Az :=

N
∑

i=1

A(i) ∂z

∂xi
,

where A(i) are l × d matrices and z : RN 7→ Rd a vector valued function. Let

p ∈ (1,∞) and z1, z2 ∈ R
d, z1 6= z2 be two constant states such that

z2 − z1 /∈ Λ,

where Λ denotes the wave cone defined by

Λ = {z ∈ R
d : there exists ξ ∈ R

N \ {0} such that A(zh(· · ξ)) = 0 ∀h : R → R}.

Let further zn : Ω → Rd be an equi-integrable family of functions with

‖zn‖Lp 6 c,

Azn → 0 in W−1,r(Ω)

for some r ∈ (1, N/(N − 1)), and assume that (zn) generates a compactly supported

Young measure such that

supp[νx] ⊂ {λz1 + (1− λ)z2, λ ∈ [0, 1]} for a.a. x ∈ Ω.

Then there exists z∞ ∈ Rd such that

zn → z∞ in Lp(Ω).
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In our setting (i.e. the state vector is (̺,m1,m2, U11, U12, E, r1, r2)), we have

A(1) =









1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 0 0 1 0 0









, A(2) =









0 1 0 0 0 0 0 0

0 0 0 1 0 1 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 0









,

A(3) =









0 0 1 0 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 −1 0 1 0 0

0 0 0 0 0 0 0 1









.

For a given point z = (̺,m1,m2, U11, U12, E, r1, r2) define a matrix (ZA)ji as

follows:

(ZA)ji =

d
∑

k=1

A
(i)
jk zk, j = 1, . . . , 4, i = 1, . . . , 3.

As observed in [7], Section 3.2, z ∈ Λ if and only if the corresponding ZA satisfies

rankZA < 3. Thus, it is enough to take

z1 =
(

1, 1, 0,
1

2
, 0,

3

2
,
5

2
, 0
)

, z2 =
(

γ, 1, 0,
1

2γ
, 0,

3

2γ
,

5

2γ2
, 0
)

.

Trivially, both z1 and z2 are solutions to (2.2), since they are constant. Moreover,

there exists γ such that z1 − z2 /∈ Λ. Indeed, the corresponding ZA is of the form





















1− γ 0 0

0 2
(

1− 1

γ

)

0

0 0 1− 1

γ
3

2

(

1− 1

γ

) 5

2

(

1− 1

γ2

)

0





















and the determinant of the 3 × 3 submatrix (ZA)
3
i,j=1 is 2(1 − γ)(1 − 1/γ)2 and

thus is non-zero for all γ 6= 1. According to Theorem 2.2, the measure valued solu-

tion νt,x = 1
2δz1 +

1
2δz2 may not be approximated by a sequence of weak solutions.

This is the cheapest way how to produce a solution of the demanded quality. How-

ever, the initial datum for this solution is already a measure and one may ask, as

we did in the introduction, whether there is a measure-valued solution emanating

from deterministic initial data which cannot be approximated by a sequence of weak

solutions.
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3. Solution emanating from ‘atomic’ initial data

We present a non-constant variation of Theorem 2.2 proven in [12]:

Theorem 3.1. Let Ω ⊂ R3 be an open bounded domain, A a linear homogeneous
constant rank differential operator of order one satisfying l > 3, and 1 6 p < ∞.
Further, let z1, z2 ⊂ L∞(Ω,Rm) be such that z2 − z1 /∈ Λ a.e. in Ω, where Λ is the

associated wave cone. Assume zn : Ω 7→ Rm is an equi-integrable family of functions

such that

‖zn‖p 6 c < ∞, Azn → 0 in W−1,r(Ω)

for some r ∈ (1, N/(N − 1)), and {zn} generates a compactly supported Young
measure ν ∈ L∞

w (Ω,M1(Rm)) such that

supp(νx) ⊂ {λz1(x) + (1 − λ)z2(x), λ ∈ [0, 1]}

for a.e. x ∈ Ω. Then for a.e. x ∈ Ω it holds that

νx = δw(x)

with w ∈ L1(Ω) and zn → w in L1(Ω).

The question of the existence of the demanded measure-valued solution reduces to

the question whether there are two weak solutions to (2.2) z1 and z2 emanating from

the same “atomic” initial conditions such that z1 − z2 /∈ Λ on an open non-empty

set Ω ⊂ R3. As noted before, we need to compute the rank of a certain matrix.

Let z1 = (̺α,mα
1 ,m

α
2 , U

α
11, U

α
12, E

α, rα1 , r
α
2 ) and z2 = (̺β ,mβ

1 ,m
β
2 , U

β
11, U

β
12, E

β ,

rβ1 , r
β
2 ) be two solutions for which the constraint (2.4) is effective almost everywhere.

The appropriate ZA is of the form

(3.1)









̺α − ̺β mα
1 −mβ

1 mα
2 −mβ

2

mα
1 −mβ

1 Uα
11 − Uβ

11 + Eα − Eβ Uα
12 − Uβ

12

mα
2 −mβ

2 Uα
12 − Uβ

12 Uβ
11 − Uα

11 + Eα − Eβ

Eα − Eβ rα1 − rβ1 rα2 − rβ2









.

Below, we show the existence of two solutions (̺α,vα, pα) and (̺β ,vβ , pβ) for

which the appropriate matrix ZA is of rank 3 on an open non-empty set.

3.1. The self-similar solution. Take Riemann initial data of the following form:

(̺,v, p)0 =

{

(̺−, (vK , 0), p−) for x1 < 0,

(̺K , (0, 0), p+) for x1 > 0,

where

̺K = ̺−
p− + 3p+
3p− + p+

, vK =

√
2√
̺
−

p+ − p−√
p− + 3p+
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and ̺−, p−, p+ > 0, p+ > p− are given constants. According to [17], there is

a self-similar solution consisting of a 1-shock. In particular, let

s = − p+ + 3p−
√

2̺−(p− + 3p+)
.

Then a triple

(̺α,vα, pα) =

{

(̺−, (vK , 0), p−) for x1 < st,

(̺K , (0, 0), p+) for x1 > st

is a weak solution to (2.1), see Figure 1.

x1 = st

(̺K , (0, 0), p+)(̺
−
, (vK , 0), p

−
)

x1

Figure 1. Self-similar solution.

3.2. The wild solution. Here we present the necessary details of the construction

from [16]. First, according to [16], Section 4.3, we define a pressure pδ = p++ δp and

a velocity vδ = δv, where

δv = δp

√

2

̺K(4p+ + 3δp)
.

Also, set

̺δ = ̺K
3pδ + p+
3p+ + pδ

.

Note that δv = δv(δp) is a smooth function on a neighborhood of 0, δv(0) = 0,

and δp is a positive arbitrarily small number. The time-space is then divided into

regions Ω−, Ω1, Ω2, Ωδ and Ω+ as shown in Figure 2.

Ω+

Ωδ
Ω2Ω1

Ω
−

x1

Figure 2. Fan partition.
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Between Ωδ and Ω+ there is a 3-shock. In order to handle the region Ω− ∪ Ω1 ∪
Ω2 ∪Ωδ, we use the Galilean transformation

(̺, (v, u), p)(t, x) 7→ (̺, (v − δv, u), p)(t, x+ δvte1)

to get the right state

(̺−, (vK − δv, 0), p−) in Ω−

and the left state

(̺δp , (0, 0), p+ + δp) in Ωδ.

The Galilean transformation also changes the sets Ω−, Ω1, Ω2, and Ωδ. However, we

keep the same notation for the sake of simplicity.

According to [16], Theorem 3.1, there exist infinitely many admissible weak so-

lutions to (2.1). We denote one of these solutions by (̺β , (v′)β , pβ)—this solution

has to be transformed back by Galilean transformation into the solution (̺β ,vβ , pβ).

Such a solution fulfills

(̺β , (v′)β , pβ) ↾Ω
−

= (̺−, (vK − δv, 0), p−), (̺β , (v′)β , pβ) ↾Ωδ
= (̺δ, (0, 0), p+ + δp).

Moreover, we have the following:

|(v′)β ↾Ω2
|2 = ε2 + ε̃2, ̺β ↾Ω1

= ̺1 ∈ R
+, ̺β ↾Ω2

= ̺2 ∈ R
+,

pβ ↾Ω1
= p1, pβ ↾Ω2

= p2,

where

ε2 = ε2(v− − δp, ̺1, ̺2, p−, p+), ε̃2 = ε̃2(v− − δp, ̺1, ̺2, p−, p+),

p2 := p2(̺2, p−)

are continuous functions. Moreover, the construction is such that ̺K − ̺1 and

̺2 − ̺K may be arbitrarily small. As δv and δp are also arbitrarily small, we verify

the property that matrix (3.1) has full rank for ̺1 = ̺2 = ̺K , v− = vK and pδ = p+

on a set of positive measure. The aforementioned continuity then allows to use the

intended approximation.

The interface between Ω2 and Ωδ is {x1 = δvt}. Consequently, the domain Ω2 ∩
{x1 > st} is non-empty and has positive measure, since s < 0. On this set we take

zα =
(

̺α, ̺αvα, ̺αuα,
1

2
̺α((vα)2 − (uα)2), ̺αuαvα,

1

2
̺α|vα|2 + pα,

(1

2
̺α|vα|2 + 2pα

)

vα,
(1

2
̺α|vα|2 + 2pα

)

uα
)

,

zβ =
(

̺β, ̺βvβ , ̺βuβ,
1

2
̺β((vβ)2 − (uβ)2), ̺βuβvβ ,

1

2
̺β |vβ |2 + pβ ,

(1

2
̺β |vβ |2 + 2pβ

)

vβ ,
(1

2
̺β |vβ |2 + 2pβ

)

uβ
)

.
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Note that |vβ |2 = |(v′)β + δpe1|2 = ε2 + ε̃2 + o(δ) on Ω2. Matrix (3.1) on the

considered set is of the form









̺2 − ̺K ̺2v
β ̺2u

β

̺2v
β ̺2|vβ |2 + p2 − p+ ̺2u

βvβ

̺2u
β ̺2u

βvβ ̺2|uβ|2 + p2 − p+
1
2̺2|vβ |2 + p2 − p+

(

1
2̺2|vβ |2 + 2p2

)

vβ
(

1
2̺2|vβ |2 + 2p2

)

uβ









.

The determinant of the submatrix consisting of the first, second, and third rows

is

(p2 − p+)((̺2 − ̺K)(p2 − p+)− ̺2̺K |vβ |2).

So the corresponding matrix ZA is of rank 3 once we know that p2 6= p+ and

(3.2) |vβ |2 6= (̺2 − ̺K)(p2 − p+)

̺2̺K
.

We have p2 ≈ p−(̺K/̺−)
2 6= p+ once we know that p+ > p−, and so it remains to

verify (3.2).

Since all above mentioned quantities are bounded and ̺2 − ̺K is negligible, the

right-hand side of (3.2) can be made arbitrarily close to zero. We need to show that

|vβ |2 is far away from zero. According to [16], Sections 3.2 & 3.8 we have

|vβ |2 ≈ ε2(vK , ̺K , ̺K , p−, p+)+ε̃2(vK , ̺K , ̺K , p−, p+) = 4
(p+ − p−)(p+ + p−)

2

̺−(3p+ + p−)(3p− + p+)
.

Consequently, (3.2) is fulfilled and it is allowed to consider also the intended small

perturbations. The Young measure

νt,x =
1

2
δ(̺α,̺α

v
α,(1/2)̺α|vα|2+pα) +

1

2
δ(̺β ,̺β

v
β ,(1/2)̺β |vβ |2+pβ)

is a measure-valued solution which, due to Theorem 3.1, cannot be generated by

weak solutions.

We get the following claim as a result of the previous considerations.

Theorem 3.2. There exists a measure-valued solution to (2.1) with non-constant

entropy, emanating from certain Riemann initial data, which cannot be generated

by a sequence of weak solutions.
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