[1] Aaronson, J., Burton, R., Dehling, H., Gilat, D., Hill, T., Weiss, B.:
Strong laws for $L$- and $U$-statistics. Trans. Amer. Math. Soc. 348 (1996), 2845-2866.
DOI |
MR 1363941
[2] Aleshkyavichene, A. K.:
Large and moderate deviations for $L$-statistics. Lithuanian Math. J. 31 (1991), 145-156.
DOI |
MR 1161365
[3] Bentkus, V., Zitikis, R.:
Probabilities of large deviations for $L$-statistics. Lithuanian Math. J. 30 (1990), 215-222.
DOI |
MR 1082474
[6] Callaert, H., Vandemaele, M., Veraverbeke, N.:
A Cramér type large deviation theorem for trimmed linear combinations of order statistics. Comm. Statist. A-Theory Methods 11 (1982), 2689-2698.
DOI |
MR 0682121
[7] Chernoff, H., Gastwirth, J. L., Johns, M. V. J.:
Asymptotic distribution of linear combinations of functions of order statistics with applications to estimation. Ann. Math. Statist 38 (1967), 52-72.
DOI |
MR 0203874
[8] H., David, A., Nagaraja, H. N.:
Order Statistics. Third edition. Wiley-Interscience, John Wiley and Sons,], Hoboken, NJ, 2003.
MR 1994955
[9] Dembo, A., Zeitouni, O.:
Large Deviations Techniques and Applications. Springer-Verlag, Berlin 2010.
MR 2571413
[10] Grané, A., Tchirina, A. V.:
Asymptotic properties of a goodness-of-fit test based on maximum correlations. Statistics 47 (2013), 202-215
DOI |
MR 3023025
[11] Gribkova, N.:
Cramér type large deviations for trimmed $L$-statistics. Probab. Math. Statist. 37 (2017), 101-118.
DOI |
MR 3652203
[12] Helmers, R.:
The order of the normal approximation for linear combinations of order statistics with smooth weight functions. Ann. Probab. 5 (1977), 940-953.
DOI 10.1214/aop/1176995662 |
MR 0458716
[14] Helmers, R., Janssen, P., Serfling, R.:
Glivenko-Cantelli properties of some generalized empirical DF's and strong convergence of generalized $L$-statistics. Probab. Theory Related Fields 79 (1988), 75-93.
DOI |
MR 0952995
[15] Li, D. L., Rao, M. B., Tomkins, R. J.:
The law of the iterated logarithm and central limit theorem for $L$-statistics. J. Multivariate Anal. 78 (2001), 191-217.
DOI |
MR 1859755
[17] Jiang, H., Wang, W. G., Yu, L.:
An exponential nonuniform convergence rate for a class of normalized $L$-statistics. J. Statist. Plann. Inference 171 (2016), 135-146.
DOI |
MR 3458074
[19] Mason, D. M., Shorack, G. R.:
Necessary and sufficient conditions for asymptotic normality of trimmed $L$-statistics. J. Statist. Plann. Inference 25 (1990), 111-139.
DOI |
MR 1055726
[20] D., Mason, M., Shorack, G. R.:
Necessary and sufficient conditions for asymptotic normality of $L$-statistics. Ann. Probab. 20 (1992), 1779-1804.
DOI |
MR 1188042
[21] Miao, Y., Chen, Y. X., Xu, S. F.:
Asymptotic properties of the deviation between order statistics and $p$-quantile. Comm. Statist. Theory Methods 40 (2011), 8-14.
DOI 10.1080/03610920903350523 |
MR 2747194
[22] Plachky, D., Steinebach, J.:
A theorem about probabilities of large deviations with an application to queuing theory. Period. Math. Hungar. 6 (1975), 343-345.
DOI |
MR 0410870
[23] Sen, P. K.:
An invariance principle for linear combinations of order statistics. Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 42 (1978), 327-340.
DOI |
MR 0483171
[24] Reiss, R. D.:
Approximate Distributions of Order Statistics. With Applications to Nonparametric Statistics. Springer-Verlag, New York 1989.
MR 0988164
[25] Stigler, S. M.:
Linear functions of order statistics with smooth weight functions. Ann. Statist. 2 (1974), 676-693.
DOI |
MR 0373152
[26] Stigler, S. M.:
Correction to: "Linear functions of order statistics with smooth weight functions'' (Ann. Statist. 2 (1974), 676-693). Ann. Statist. 7 (1979), 466.
DOI 10.1214/aos/1176342756 |
MR 0373152
[27] A., Tchirina, V.:
Asymptotic properties of exponentiality tests based on $L$-statistics. Acta Appl. Math. 97 (2007), 297-309.
DOI |
MR 2329737
[28] Zwet, W. R. van:
A strong law for linear functions of order statistics. Ann. Probab. 8 (1980), 986-990.
MR 0586781
[29] Vandemaele, M., Veraverbeke, N.:
Cramér type large deviations for linear combinations of order statistics. Ann. Probab. 10 (1982), 423-434.
DOI |
MR 0647514
[30] Wellner, J. A.:
A Glivenko-Cantelli theorem and strong laws of large numbers for functions of order statistics. Ann. Statist. 5 (1977), 473-480.
DOI |
MR 0651528
[31] Wellner, J. A.:
Correction to: "A Glivenko-Cantelli theorem and strong laws of large numbers for functions of order statistics''. Ann. Statist. 6 (1978), 1394.
DOI |
MR 0651529
[32] Xu, S. F., Ge, L., Miao, Y.:
On the Bahadur representation of sample quantiles and order statistics for NA sequences. J. Korean Statist. Soc. 42 (2013), 1-7.
DOI |
MR 3255361
[33] Xu, S. F., C., Mei, L., Miao, Y.:
Limit theorems for ratios of order statistics from uniform distributions. J. Inequal. Appl. 2019, Paper No. 303.
DOI |
MR 4062049
[34] Xu, S. F., Miao, Y.:
Uniform moderate deviation of sample quantiles and order statistics. Bull. Korean Math. Soc. 51 (2014), 1399-1409.
DOI |
MR 3267238
[35] Xu, S. F., Miao, Y.:
Some limit theorems for ratios of order statistics from uniform random variables. J. Inequal. Appl. 2017, Paper No. 295.
DOI |
MR 3736591
[36] Yao, S. X., Miao., Y., Nadarajah, S.:
Exponential convergence for the $k$th order statistics. Filomat 29 (2015), 977-984.
DOI |
MR 3359285