Previous |  Up |  Next

Article

Keywords:
linear combinations of order statistics; large deviation; moderate deviation; Gini mean difference statistics
Summary:
In the present paper, we establish the moderate and large deviations for the linear combinations of uniform order statistics. As applications, the moderate and large deviations for the $k$-th order statistics from uniform distribution, Gini mean difference statistics and the $k$-th order statistics from general continuous distribution are obtained.
References:
[1] Aaronson, J., Burton, R., Dehling, H., Gilat, D., Hill, T., Weiss, B.: Strong laws for $L$- and $U$-statistics. Trans. Amer. Math. Soc. 348 (1996), 2845-2866. DOI  | MR 1363941
[2] Aleshkyavichene, A. K.: Large and moderate deviations for $L$-statistics. Lithuanian Math. J. 31 (1991), 145-156. DOI  | MR 1161365
[3] Bentkus, V., Zitikis, R.: Probabilities of large deviations for $L$-statistics. Lithuanian Math. J. 30 (1990), 215-222. DOI  | MR 1082474
[4] Bjerve, S.: Error bounds for linear combinations of order statistics. Ann. Statist. 5 (1977), 357-369. DOI 10.1214/aos/1176343800 | MR 0518648
[5] Boistard, H.: Large deviations for $L$-statistics. Statist. Decisions 25 (2007), 89-125. DOI 10.1524/stnd.2007.25.2.89 | MR 2388858
[6] Callaert, H., Vandemaele, M., Veraverbeke, N.: A Cramér type large deviation theorem for trimmed linear combinations of order statistics. Comm. Statist. A-Theory Methods 11 (1982), 2689-2698. DOI  | MR 0682121
[7] Chernoff, H., Gastwirth, J. L., Johns, M. V. J.: Asymptotic distribution of linear combinations of functions of order statistics with applications to estimation. Ann. Math. Statist 38 (1967), 52-72. DOI  | MR 0203874
[8] H., David, A., Nagaraja, H. N.: Order Statistics. Third edition. Wiley-Interscience, John Wiley and Sons,], Hoboken, NJ, 2003. MR 1994955
[9] Dembo, A., Zeitouni, O.: Large Deviations Techniques and Applications. Springer-Verlag, Berlin 2010. MR 2571413
[10] Grané, A., Tchirina, A. V.: Asymptotic properties of a goodness-of-fit test based on maximum correlations. Statistics 47 (2013), 202-215 DOI  | MR 3023025
[11] Gribkova, N.: Cramér type large deviations for trimmed $L$-statistics. Probab. Math. Statist. 37 (2017), 101-118. DOI  | MR 3652203
[12] Helmers, R.: The order of the normal approximation for linear combinations of order statistics with smooth weight functions. Ann. Probab. 5 (1977), 940-953. DOI 10.1214/aop/1176995662 | MR 0458716
[13] Helmers, R.: A Berry-Esseen theorem for linear combinations of order statistics. Ann. Probab. 9 (1981), 342-347. DOI 10.1214/aop/1176994478 | MR 0606999
[14] Helmers, R., Janssen, P., Serfling, R.: Glivenko-Cantelli properties of some generalized empirical DF's and strong convergence of generalized $L$-statistics. Probab. Theory Related Fields 79 (1988), 75-93. DOI  | MR 0952995
[15] Li, D. L., Rao, M. B., Tomkins, R. J.: The law of the iterated logarithm and central limit theorem for $L$-statistics. J. Multivariate Anal. 78 (2001), 191-217. DOI  | MR 1859755
[16] Jiang, H.: Moderate deviations for a class of $L$-statistics. Acta Appl. Math. 109 (2010), 1165-1178. DOI 10.1007/s10440-008-9375-3 | MR 2596195
[17] Jiang, H., Wang, W. G., Yu, L.: An exponential nonuniform convergence rate for a class of normalized $L$-statistics. J. Statist. Plann. Inference 171 (2016), 135-146. DOI  | MR 3458074
[18] Mason, D. M.: Some characterizations of strong laws for linear functions of order statistics. Ann. Probab. 10 (1982), 1051-1057. DOI 10.1214/aop/1176993727 | MR 0672306
[19] Mason, D. M., Shorack, G. R.: Necessary and sufficient conditions for asymptotic normality of trimmed $L$-statistics. J. Statist. Plann. Inference 25 (1990), 111-139. DOI  | MR 1055726
[20] D., Mason, M., Shorack, G. R.: Necessary and sufficient conditions for asymptotic normality of $L$-statistics. Ann. Probab. 20 (1992), 1779-1804. DOI  | MR 1188042
[21] Miao, Y., Chen, Y. X., Xu, S. F.: Asymptotic properties of the deviation between order statistics and $p$-quantile. Comm. Statist. Theory Methods 40 (2011), 8-14. DOI 10.1080/03610920903350523 | MR 2747194
[22] Plachky, D., Steinebach, J.: A theorem about probabilities of large deviations with an application to queuing theory. Period. Math. Hungar. 6 (1975), 343-345. DOI  | MR 0410870
[23] Sen, P. K.: An invariance principle for linear combinations of order statistics. Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 42 (1978), 327-340. DOI  | MR 0483171
[24] Reiss, R. D.: Approximate Distributions of Order Statistics. With Applications to Nonparametric Statistics. Springer-Verlag, New York 1989. MR 0988164
[25] Stigler, S. M.: Linear functions of order statistics with smooth weight functions. Ann. Statist. 2 (1974), 676-693. DOI  | MR 0373152
[26] Stigler, S. M.: Correction to: "Linear functions of order statistics with smooth weight functions'' (Ann. Statist. 2 (1974), 676-693). Ann. Statist. 7 (1979), 466. DOI 10.1214/aos/1176342756 | MR 0373152
[27] A., Tchirina, V.: Asymptotic properties of exponentiality tests based on $L$-statistics. Acta Appl. Math. 97 (2007), 297-309. DOI  | MR 2329737
[28] Zwet, W. R. van: A strong law for linear functions of order statistics. Ann. Probab. 8 (1980), 986-990. MR 0586781
[29] Vandemaele, M., Veraverbeke, N.: Cramér type large deviations for linear combinations of order statistics. Ann. Probab. 10 (1982), 423-434. DOI  | MR 0647514
[30] Wellner, J. A.: A Glivenko-Cantelli theorem and strong laws of large numbers for functions of order statistics. Ann. Statist. 5 (1977), 473-480. DOI  | MR 0651528
[31] Wellner, J. A.: Correction to: "A Glivenko-Cantelli theorem and strong laws of large numbers for functions of order statistics''. Ann. Statist. 6 (1978), 1394. DOI  | MR 0651529
[32] Xu, S. F., Ge, L., Miao, Y.: On the Bahadur representation of sample quantiles and order statistics for NA sequences. J. Korean Statist. Soc. 42 (2013), 1-7. DOI  | MR 3255361
[33] Xu, S. F., C., Mei, L., Miao, Y.: Limit theorems for ratios of order statistics from uniform distributions. J. Inequal. Appl. 2019, Paper No. 303. DOI  | MR 4062049
[34] Xu, S. F., Miao, Y.: Uniform moderate deviation of sample quantiles and order statistics. Bull. Korean Math. Soc. 51 (2014), 1399-1409. DOI  | MR 3267238
[35] Xu, S. F., Miao, Y.: Some limit theorems for ratios of order statistics from uniform random variables. J. Inequal. Appl. 2017, Paper No. 295. DOI  | MR 3736591
[36] Yao, S. X., Miao., Y., Nadarajah, S.: Exponential convergence for the $k$th order statistics. Filomat 29 (2015), 977-984. DOI  | MR 3359285
Partner of
EuDML logo