[1] Aşıcı, E.:
An order induced by nullnorms and its properties. Fuzzy Sets Syst. 325 (2017), 35-46.
DOI |
MR 3690353
[2] Aşıcı, E.:
The equivalence of uninorms induced by the $ U $-partial order. Hacet. J. Math. Stat. 48 (2019), 2, 439-450.
DOI |
MR 3974553
[3] Aşıcı, E.:
Construction methods for triangular norms and triangular conorms on appropriate bounded lattices. Iran. J. Fuzzy Syst. 18 (2021), 81-98.
DOI |
MR 4284673
[4] Aşıcı, E., Karaçal, F.:
On the $ T $-partial order and properties. Inform. Sci. 267 (2014), 323-333.
DOI |
MR 3177320
[5] Aşıcı, E., Mesiar, R.:
Alternative approaches to obtain t-norms and t-conorms on bounded lattices. Iran. J. Fuzzy Syst. 17 (2020), 121-138.
DOI |
MR 4155854
[6] Aşıcı, E., Mesiar, R.: On generating uninorms on some special classes of bounded lattices. Fuzzy Sets Syst.
[7] Aşıcı, E., Mesiar, R.:
On the construction of uninorms on bounded lattices. Fuzzy Sets Syst. 408 (2021), 65-85.
DOI |
MR 4210984
[8] Beliakov, G., Pradera, A., Calvo, T.:
Aggregation Functions: A Guide for Practitioners. Studies in Fuzziness and Soft Computing, vol. 221, Springer, Berlin, Heidelberg 2007.
MR 3382259
[9] Birkhoff, G.:
Lattice Theory. Third edition. Providence 1967.
MR 0227053
[10] Calvo, T., Baets, B. De, Fodor, J.:
The functional equations of Frank and Alsina for uninorms and nullnorms. Fuzzy Sets Syst. 120 (2001), 385-394.
DOI |
MR 1829256 |
Zbl 0977.03026
[11] Calvo, T., Mayor, G., Mesiar, R.:
Aggregation Operators: New Trends and Applications. Studies in Fuzziness and Soft Computing, vol. 97, Springer, Berlin, Heidelberg 2002.
MR 1936384
[12] Casasnovas, J., Mayor, G.:
Discrete t-norms and operations on extended multisets. Fuzzy Sets Syst. 159 (2008), 1165-1177.
DOI |
MR 2416385 |
Zbl 1176.03023
[13] Çaylı, G. D.:
New methods to construct uninorms on bounded lattices. Int. J. Approximate Reason. 115 (2019), 254-264.
DOI |
MR 4018632
[14] Çaylı, G. D.:
Uninorms on bounded lattices with the underlying t-norms and t-conorms. Fuzzy Sets and Systems 395 (2020), 107-129.
DOI |
MR 4109064
[15] Çaylı, G. D.:
Alternative approaches for generating uninorms on bounded lattices. Inform. Sci. 488 (2019), 111-139.
DOI |
MR 3924420
[16] Baets, B. De, Mesiar, R.:
Triangular norms on product lattices. Fuzzy Sets Syst. 104 (1999), 61-75.
DOI |
MR 1685810 |
Zbl 0935.03060
[17] Drewniak, J., Drygaś, P., Rak, E.:
Distributivity between uninorms and nullnorms. Fuzzy Sets Syst. 159 (2008), 1646-1657.
DOI |
MR 2419975
[18] Ertuğrul, Ü., Kesicioğlu, M. N., Karaçal, F.:
Ordering based on uninorms. Inform. Sci. 330 (2016), 315-327.
DOI
[20] Fodor, J., Baets, B. De:
A single-point characterization of representable uninorms. Fuzzy Sets Syst. 202 (2012), 89-99.
DOI |
MR 2934788 |
Zbl 1268.03027
[21] Kalina, M.:
On uninorms and nullnorms on direct product of bounded lattices. Open Phys. 14 (2016), 321-327.
DOI
[22] Karaçal, F., Mesiar, R.:
Uninorms on bounded lattices. Fuzzy Sets Syst. 261 (2015), 33-43.
DOI |
MR 3291484
[23] Karaçal, F., Kesicioğlu, M. N.:
A T-partial order obtained from t-norms. Kybernetika 47 (2011), 300-314.
DOI |
MR 2828579 |
Zbl 1245.03086
[24] Kesicioğlu, M. N., Karaçal, F., Ertuğrul, Ü.:
An equivalence relation based on the $ U $-partial order. Inform. Sci. 411 (2017), 39-51.
DOI |
MR 3659313
[25] Klement, E. P., Mesiar, R., Pap, E.:
Triangular Norms. Kluwer Academic Publishers, Dordrecht 2000.
MR 1790096 |
Zbl 1087.20041
[26] Klir, G. J., Yuan, B.:
Fuzzy Sets and Fuzzy Logic, Theory and Application. Prentice Hall PTR, Upper Saddle River, New Jersey 1995.
MR 1443433
[27] Saminger, S.:
On ordinal sums of triangular norms on bounded lattices. Fuzzy Sets Syst. 157 (2006), 1403-1416.
DOI |
MR 2226983 |
Zbl 1099.06004