[1] Aczél, J.:
Lectures on Functional Equations and their Applications. Acad. Press, New York 1966.
MR 0208210
[2] Alsina, C., Frank, M. J., Schweizer, B.:
Associative Functions. Triangular Norms and Copulas, World Scientific Publishing Co., Singapore 2006.
MR 2222258
[3] Dujmovic, J. J.:
Weighted conjuctive and disjunctive means and their application in system evaluation. Univ. Beograd Publ. Elektrotech. Fak. 483 (1974), 147-158.
DOI |
MR 0378884
[5] Even, Y., Lehrer, E.:
Decomposition-integral: unifying Choquet and the concave integrals. Economic Theory 56 (2014), 1, 33-58.
DOI |
MR 3190759
[6] Grabisch, M., Marichal, J. L., Mesiar, R., Pap, E.:
Aggregation Functions. Cambridge University Press, New York 2009.
MR 2538324 |
Zbl 1206.68299
[7] Klement, E. P., Mesiar, R., Pap, E.:
Triangular Norms. Kluwer Academic Publisher, Dordrecht 2000.
MR 1790096 |
Zbl 1087.20041
[8] Lima, L., Bedregal, B., Bustince, H., Barrenechea, E., Rocha, M.:
An interval extension of homogeneous and pseudo-homogeneous t-norms and t-conorms. Inform. Sci. 355-356 (2016), 328-347.
DOI
[9] Nelsen, R. E.:
An Introduction to Copulas. Second edition. Springer, New York 2006.
MR 2197664
[10] Mayor, G., Mesiar, R., Torrens, J.:
On quasi-homogeneous copulas. Kybernetika 44 (2008), 6, 745-755.
DOI |
MR 2488902
[11] Mesiar, R., Li, J., Pap, E.:
Discrete pseudo-integrals. Int. J. Approx. Reasoning 54 (2013), 357-364.
DOI |
MR 3021836 |
Zbl 1267.28018
[12] Mesiar, R., Rückschlossová, T.:
Characterization of invariant aggregation operators. Fuzzy Sets and Systems 142 (2004), 63-73.
DOI |
MR 2045343
[13] Rückschlossová, T., Rückschloss, R.:
Homogeneous aggregation operators. Kybernetika 42(3) (2006), 279-286.
MR 2253389
[14] Xie, A., Su, Y., Liu, H.:
On pseudo-homogeneous triangular norms, triangular conorms and proper uninorms. Fuzzy Sets and Systems 287 (2016), 203-212.
DOI |
MR 3447027
[15] Su, Y., Zong, W., Mesiar, R.:
Characterization of homogeneous and quasi-homogeneous binary aggregation functions. Fuzzy Sets and Systems, in press.
DOI