[1] Anguelova, M., Wennberg, B.:
State elimination and identifiability of the delay parameter for nonlinear time-delay systems. Automatica 44 (2008), 5, 1373-1378.
DOI |
MR 2531805 |
Zbl 1283.93084
[2] al., S. Audoly et.:
Global identifiability of nonlinear models of biological systems. IEEE. Trans. Biomed. Engrg. 48 (2001), 55-65.
DOI
[3] Bayma, R. S., Lang, Z. Q.:
A new method for determining the generalised frequency response functions of nonlinear systems. IEEE Trans. Circuits Systems I 59 (2012), 12, 3005-3014.
DOI |
MR 3006575
[4] Bedrosian, E., Rice, S. O.:
The output properties of Volterra systems (nonlinear systems with memory) driven by harmonic and Gaussian inputs. Proc. IEEE 59 (1971), 12, 1688-1707.
DOI |
MR 0396037
[5] Belkoura, L., Orlov, Y.:
Identifiability analysis of linear delay-differential systems. IMA J. Math. Control Inform. 19 (2002), 73-81.
DOI |
MR 1899005
[6] Bellman, R., Aström, K. J.:
On structural identifiability. Math. Biosci. 7 (1970), 3-4, 329-339.
DOI |
MR 0820403
[7] al., G. Bellu et.:
DAISY: A new software tool to test global identifiability of biological and physiological systems. Comput. Methods Programs Biomed. 88 (2007), 52-61.
DOI
[8] Billings, S. A., Tsang, K. M.:
Spectral analysis for nonlinear systems, Part I: parametric nonlinear spectral analysis. Mechanic. Systems Signal Process. 3 (1989), 4, 319-339.
DOI
[10] Cheng, C. M., Peng, Z. K., Zhang, W. M., Meng, G.:
Volterra-series-based nonlinear system modeling and its engineering applications: A state-of-the-art review. Mech. Systems Signal Process. 87 (2017), 340-364.
DOI
[11] Chis, O. T., Banga, J. R., Balsa-Canto, E.: Structural identifiability of systems biology models: a critical comparison of methods. PloS One 6 (2011), 11.
[12] Churilov, A. N., Medvedev, A., Zhusubaliyev, Z. T.:
Impulsive Goodwin oscillator with large delay: Periodic oscillations, bistability, and attractors. Nonlinear Analysis: Hybrid Systems 21 (2016), 171-183.
DOI |
MR 3500080
[13] Cooke, K., Driessche, P. Van den, Zou, X.:
Interaction of maturation delay and nonlinear birth in population and epidemic models. J. Math. Biology 39 (1999), 4, 332-352.
DOI |
MR 1727839
[14] Denis–Vidal, L., Joly–Blanchard, G., Noiret, C.:
Some effective approaches to check the identifiability of uncontrolled nonlinear systems. Math. Comput. Simul. 57 (2000), 35-44.
DOI |
MR 1845551
[15] Epstein, I. R., Luo, Y.:
Differential delay equations in chemical kinetics. Nonlinear models. The cross-shaped phase diagram and the oregonator. J. Chem. Phys. 95 (1991), 244-254.
DOI
[16] Fliess, M.:
Fonctionnelles causales non linéaires et indéterminées non commutatives. Bull. Soc. Math. France 109 (1981), 3-40.
DOI 10.24033/bsmf.1931 |
MR 0613847
[17] George, D.: Continuous Nonlinear Systems. MIT RLE Technical Report No. 355, 1959.
[18] Glad, T.:
Nonlinear state space and input-output descriptions using differential polynomials. In Descusse. Lecture Notes in Control and Information Science J. (M. Fliess, A. Isidori and D. Leborgne, eds.), Vol. 122., Springer Berlin.
MR 1229775
[19] Hermann, K., Krener, A.:
Nonlinear controllability and observability. IEEE Trans. Automat. Control, 22 (1977), 5, 728-740.
DOI |
MR 0476017
[20] al., B. Huang et.:
Impact of time delays on oscillatory dynamics of interlinked positive and negative feedback loops. Physical Review E 94 (2016), 5, 052413.
DOI
[21] Isidori, A.:
Nonlinear Control Systems. Second edition. Springer-Verlag, Berlin 1989.
MR 1015932
[22] Kuang, Y.:
Delay Differential Equations With Applications in Population Dynamics. Academic Press, Boston 1993.
MR 1218880 |
Zbl 0777.34002
[23] Lapytsko, A., Schaber, J.:
The role of time delay in adaptive cellular negative feedback systems. J. Theoret. Biology 398 (2016), 64-73.
DOI
[24] Li, J., Kuang, Y., Mason, C. C.:
Modeling the glucose–insulin regulatory system and ultradian insulin secretory oscillations with two explicit time delays. J. Theoret. Biology 242 (2006), 3, 722-735.
DOI |
MR 2272815
[26] Ljung, L.: System Identification: Theory for the User. Second edition. Prentice-Hall, Upper Saddle River, NJ 1999.
[27] Ljung, L., Glad, T.:
On global identifiability for arbitrary model parametrizations. Automatica 30 (1994), 2, 265-276.
DOI |
MR 1261705
[28] Ljung, L., Glad, T.: Modeling of Dynamic Systems. PTR Prentice Hall, 1994.
[29] Lunel, V., Sjoerd, M.: Identification problems in functional differential equations. Proc. 36th IEEE Conference on Decision and Control IEEE 5 (1997), 4409-4413.
[31] MacDonald, N.:
Biological Delay Systems: Linear Stability Theory. Cambridge University Press, Cambridge, 1989.
MR 0996637
[32] Meshkat, N., Eisenberg, M., DiStefano, J. J.:
An algorithm for finding globally identifiable parameter combinations of nonlinear ode models using Gröbner bases. Math. Biosci. 222 (2009), 61-72.
DOI 10.1016/j.mbs.2009.08.010 |
MR 2584099
[33] al, Y. Orlov et.:
On identifiability of linear time-delay systems. IEEE Trans. Automat. Control 47 (2002), 8, 1319-1324.
DOI |
MR 1917442
[34] Orosz, G., Moehlis, J., Murray, R. M.:
Controlling biological networks by time-delayed signals. Philosoph. Trans. Royal Society A: Mathematical, Physical and Engineering Sciences 368 (1911), (2010), 439-454.
DOI |
MR 2571005
[35] Palm, G., Poggio, T.:
The Volterra representation and the Wiener expansion: validity and pitfalls. SIAM J. Appl. Math. 33 (1977), 2, 195-216.
DOI |
MR 0452959
[36] Peng, Z. K., al, et.:
Feasibility study of structural damage detection using narmax modelling and nonlinear output frequency response function based analysis. Mech. Syst. Signal Process. 25 (2011), 3, 1045-1061.
DOI
[37] Pohjanpalo, H.:
System identifiability based on the power series expansion of the solution. Math. Biosci. 41 (1978), 21-33.
DOI |
MR 0507373
[38] Ritt, J. F.: Differential Algebra. American Mathematical Society, Providence 1950.
[39] Roussel, M. R.:
The use of delay differential equations in chemical kinetics. J. Phys. Chem. 100 (1996), 20, 8323-8330.
DOI
[41] Schwaiger, J., Prager, W.:
Polynomials in additive functions and generalized polynomials. Demonstratio Math. 41 (2008), 3, 589-613.
MR 2433311
[42] Silva, C. J., Maurer, H., Torres, D. F. M.:
Optimal control of a tuberculosis model with state and control delays. Math. Biosci. Engrg. 14 (2017), 1, 321-337.
DOI 10.3934/mbe.2017021 |
MR 3562914
[43] Smith, H.:
An Introduction to Delay Differential Equations with Applications to the Life Sciences. Springer, New York 2011.
MR 2724792
[44] Söderström, T., Stoica, P.: System Identification. Prentice-Hall, 1989.
[45] Swain, A. K., Mendes, E. M. A. M., Nguang, S. K.:
Analysis of the effects of time delay in nonlinear systems using generalised frequency response functions. J. Sound Vibration 294 (2006), 1-2, 341-354.
DOI
[46] Vághy, M., Szlobodnyik, G., Szederkényi, G.:
Kinetic realization of delayed polynomial dynamical models. IFAC-PapersOnLine 52 (2019), 7, 45-50.
DOI
[47] al., S. Vajda et.:
Qualitative and quantitative identifiability analysis of nonlinear chemical kinetic models. Chem. Engrg. Commun. 83 (1989), 191-219.
DOI
[48] Vajda, S., Godfrey, K., Rabitz, H.:
Similarity transformation approach to identifiability analysis of nonlinear compartmental models. Math. Biosci. 93 (1989), 217-248.
DOI |
MR 0984279
[49] Vajda, S., Rabitz, H.:
Isomorphism approach to global identifiability of nonlinear systems. IEEE Trans. Automat. Control 34 (1989), 220-223.
DOI |
MR 0975592
[50] Villaverde, A. F., Barreiro, A.:
Identifiability of large non-linear biochemical networks. MATCH - Commun. Math. Comput. Chemistry 76 (2016), 2, 259-296.
MR 3617365
[51] Walter, E.: Identifiability of Parametric Models. Pergamon Press, Oxford 1987.
[53] Walter, E., Lecourtier, Y.:
Global approaches to identifiability testing for linear andnonlinear state space models. Math. Comput. Simul. 24 (1982), 472-482.
DOI |
MR 0710757
[54] Walter, E., Pronzato, L.:
On the identifiability and distinguishability of nonlinear parametric models. Math. Comput. Simul. 42 (1996), 125-134.
DOI
[55] Walter, E., Pronzato, L.:
Identification of Parametric Models from Experimental Data. Springer Verlag, 1997.
MR 1482525
[56] Weijiu, L.:
Introduction to Modeling Biological Cellular Control Systems. Springer Science and Business Media, 2012.
MR 2952048
[57] Villaverde, A. F.:
Observability and Structural Identifiability of Nonlinear Biological Systems. Complexity, 2019.
DOI 10.1155/2019/8497093
[58] Villaverde, A. F., Barreiro, A., Papachristodoulou, A.:
Structural identifiability of dynamic systems biology models. PLOS Comput. Biology 12 (2016), 10.
DOI
[59] Volterra, V.:
Theory of Functionals and Integral Equations. Dover, New York 1959.
MR 0100765
[60] Xia, X., Moog, C. H.:
Identifiability of nonlinear systems with application to HIV/AIDS models. IEEE Trans. Automat. Control 4 (2003), 330-336.
DOI 10.1109/TAC.2002.808494 |
MR 1957979
[61] Yuan, Y., Li, Y.: Study on EEG time series based on duffing equation. In: International Conference on BioMedical Engineering and Informatics, Vol. 2, Sanya S2008, pp. 516-519.
[62] Zhang, H., Billings, S. A., Zhu, Q. M.:
Frequency response functions for nonlinear rational models. Int. J. Control 61 (1995), 1073-1097.
DOI |
MR 1613121
[63] Zhang, J., Xia, X., Moog, C. H.:
Parameter identifiability of nonlinear systems with time-delay. IEEE Trans. Automat. Control 51 (2006), 2, 371-375.
DOI |
MR 2201731
[64] Zheng, G., Barbot, J. P., Boutat, D.:
Identification of the delay parameter for nonlinear time-delay systems with unknown inputs. Automatica 49 (2013), 6, 1755-1760.
DOI |
MR 3049224