[1] Aliprantis, C. D., Border, K. C.:
Infinite Dimensional Analysis. Springer, Berlin Heidelberg 2006.
MR 2378491 |
Zbl 1156.46001
[2] Arrow, K. J.:
Aspects of the theory of risk-bearing. In: Essays in the Theory of Risk Bearing, Markham Publ. Co., Chicago 1971, pp. 90-109.
MR 0363427
[3] Basu, A., Ghosh, M. K.:
Nonzero-sum risk-sensitive stochastic games on a countable state space. Math. Oper. Res. 43 (2018), 516-532.
DOI |
MR 3801104
[4] Bäuerle, N., Rieder, U.:
Zero-sum risk-sensitive stochastic games. Stoch. Processes Appl. 12 (2017), 2, 622-642.
DOI |
MR 3583765
[5] Becerril-Borja, R., Montes-de-Oca, R.:
A family of models for finite sequential games without a predetermined order of turns. In: Operations Research and Enterprise Systems (B. Vitoriano, G. H. Parlier, eds.), Springer International Publishing, Cham 2017, 35-51.
DOI
[6] Border, K. C.:
Fixed Point Theorems with Applications to Economics and Game Theory. Cambridge University Press, Cambridge 1985.
MR 0790845
[7] Eeckhoudt, L., Gollier, C., Schlesinger, H.:
Economic and Financial Decisions under Risk. Princeton University Press, Princeton 2005.
DOI
[8] Fleming, W. H., McEneaney, W. M.:
Risk sensitive optimal control and differential games. In: Stochastic Theory and Adaptive Control. Lecture Notes in Control and Information Sciences (T. E. Duncan and B. Pasik-Duncan, eds.), Springer, Berlin Heidelberg 1992, pp. 185-197.
MR 1198930
[9] Howard, R. A., Matheson, J. E.:
Risk sensitive Markov decision processes. Management Sci. 18 (1972), 356-369.
DOI |
MR 0292497
[10] James, M. R., Baras, J., Elliott, R. J.:
Risk-sensitive control and dynamic games for partially observed discrete-time nonlinear systems. IEEE Trans. Automat. Control 39 (1994), 780-792.
DOI |
MR 1276773
[11] Kakutani, S.:
A generalization of Brouwer's fixed point theorem. Duke Math. J. 8 (1942), 457-459.
DOI |
MR 0004776
[12] Klompstra, M. B.:
Nash equilibria in risk-sensitive dynamic games. IEEE Trans. Automat. Control 45 (2000), 1397-1401.
DOI |
MR 1780000
[13] Nowak, A. S.:
Notes on risk-sensitive Nash equilibria. In: Advances in Dynamic Games: Applications to Economics, Finance, Optimization and Stochastic Control (A. S. Nowak and K. Szajowski, eds.), Birkhäuser, Boston 2005, pp. 95-109.
MR 2104370
[14] Pratt, J. W.:
Risk aversion in the small and in the large. Econometrica 32 (1964), 122-136.
DOI |
Zbl 0267.90010
[15] Shoham, Y., Leyton-Brown, K.: Multiagent Systems: Algorithmic, Game-Theoretic, and Logical Foundations. Cambridge University Press, Cambridge 2008.
[16] Sladký, K.:
Risk sensitive average optimality in Markov decision processes. Kybernetika 54 (2018), 1218-1230.
DOI |
MR 3902630
[17] Tadelis, S.:
Game Theory: An Introduction. Princeton University Press, Princeton 2013.
MR 3235473