Previous |  Up |  Next

Article

Keywords:
constrained optimality problem; discrete-time Markov decision processes; Borel state and action spaces; varying discount factors; unbounded costs
Summary:
This paper focuses on the constrained optimality of discrete-time Markov decision processes (DTMDPs) with state-dependent discount factors, Borel state and compact Borel action spaces, and possibly unbounded costs. By means of the properties of so-called occupation measures of policies and the technique of transforming the original constrained optimality problem of DTMDPs into a convex program one, we prove the existence of an optimal randomized stationary policies under reasonable conditions.
References:
[1] Altman, E.: Denumerable constrained Markov decision processes and finite approximations. Math. Meth. Operat. Res. 19 (1994), 169-191. DOI  | MR 1290018
[2] Altman, E.: Constrained Markov decision processes. Chapman and Hall/CRC, Boca Raton 1999. MR 1703380
[3] Alvarez-Mena, J., Hernández-Lerma, O.: Convergence of the optimal values of constrained Markov control processes. Math. Meth. Oper. Res. 55 (2002), 461-484. DOI 10.1007/s001860200209 | MR 1913577
[4] Borkar, V.: A convex analytic approach to Markov decision processes. Probab. Theory Relat. Fields 78 (1988), 583-602. DOI 10.1007/BF00353877 | MR 0950347
[5] González-Hernández, J., Hernández-Lerma, O.: Extreme points of sets of randomized strategies in constrained optimization and control problems. SIAM. J. Optim. 15 (2005), 1085-1104. DOI  | MR 2178489
[6] Guo, X. P., Hernández-del-Valle, A., Hernández-Lerma, O.: First passage problems for nonstationary discrete-time stochastic control systems. Europ. J. Control 18 (2012), 528-538. DOI  | MR 3086896 | Zbl 1291.93328
[7] Guo, X. P., Zhang, W. Z.: Convergence of controlled models and finite-state approximation for discounted continuous-time Markov decision processes with constraints. Europ. J, Oper. Res. 238 (2014), 486-496. DOI  | MR 3210941
[8] Guo, X. P., Song, X. Y., Zhang, Y.: First passage criteria for continuous-time Markov decision processes with varying discount factors and history-dependent policies. IEEE Trans. Automat. Control 59 (2014), 163-174. DOI  | MR 3163332
[9] Hernández-Lerma, O., González-Hernández, J.: Constrained Markov Decision Processes in Borel spaces: the discounted case. Math. Meth. Operat. Res. 52 (2000), 271-285. DOI  | MR 1797253
[10] Hernández-Lerma, O., Lasserre, J. B.: Discrete-Time Markov Control Processes. Springer-Verlag, New York 1996. MR 1363487 | Zbl 0928.93002
[11] Hernández-Lerma, O., Lasserre, J. B.: Discrete-Time Markov Control Processes. Springer-Verlag, New York 1999. MR 1363487 | Zbl 0928.93002
[12] Hernández-Lerma, O., Lasserre, J. B.: Fatou's lemma and Lebesgue's convergence theorem for measures. J. Appl. Math. Stoch. Anal. 13(2) (2000), 137-146. DOI  | MR 1768500
[13] Huang, Y. H., Guo, X. P.: First passage models for denumerable semi-Markov decision processes with nonnegative discounted costs. Acta. Math. Appl. Sin-E. 27(2) (2011), 177-190. DOI  | MR 2784052 | Zbl 1235.90177
[14] Huang, Y. H., Wei, Q. D., Guo, X. P.: Constrained Markov decision processes with first passage criteria. Ann. Oper. Res. 206 (2013), 197-219. DOI  | MR 3073845
[15] Mao, X., Piunovskiy, A.: Strategic measures in optimal control problems for stochastic sequences. Stoch. Anal. Appl. 18 (2000), 755-776. DOI  | MR 1780169
[16] Piunovskiy, A.: Optimal Control of Random Sequences in Problems with Constraints. Kluwer Academic, Dordrecht 1997. MR 1472738
[17] Piunovskiy, A.: Controlled random sequences: the convex analytic approach and constrained problems. Russ. Math. Surv., 53 (2000), 1233-1293. DOI  | MR 1702690
[18] Prokhorov, Y.: Convergence of random processes and limit theorems in probability theory. Theory Probab Appl. 1 (1956), 157-214. DOI  | MR 0084896
[19] Wei, Q. D., Guo, X. P.: Markov decision processes with state-dependent discount factors and unbounded rewards/costs. Oper. Res. Lett. 39 (2011), 369-374. DOI  | MR 2835530
[20] Wu, X., Guo, X. P.: First passage optimality and variance minimization of Markov decision processes with varying discount factors. J. Appl. Probab. 52(2) (2015), 441-456. DOI  | MR 3372085
[21] Zhang, Y.: Convex analytic approach to constrained discounted Markov decision processes with non-constant discount factors. TOP 21 (2013), 378-408. DOI  | MR 3068494 | Zbl 1273.90235
Partner of
EuDML logo