Previous |  Up |  Next

Article

Keywords:
fuzzy implication; t-norm; category; skeleton of category
Summary:
In this paper, we introduce the product, coproduct, equalizer and coequalizer notions on the category of fuzzy implications on a bounded lattice that results in the existence of the limit, pullback, colimit and pushout. Also isomorphism, monic and epic are introduced in this category. Then a subcategory of this category, called the skeleton, is studied. Where none of any two fuzzy implications are $\Phi$-conjugate.
References:
[1] Adámek, J., Herrlich, H., Strecker, G. E.: Abstract and Concrete Categories: The Joy of Cats. Wiley, 1990. MR 1051419
[2] Baczynski, M.: On the applications of fuzzy implication functions. In: Soft Computing Applications, Springer, Berlin Heidelberg 2013, pp. 9-10. DOI 
[3] Baczynski, M., Beliakov, G., Sola, H. B., Pradera, A.: Advances in Fuzzy Implication Functions. Springer, Berlin Heidelberg 2013.
[4] Baczynski, M., Jayaram, B.: Fuzzy Implications. Springer, Berlin Heidelberg 2008.
[5] Bedregal, B. C.: Bounded lattice t-norms as an interval category. In: International Workshop on Logic, Language, Information, and Computation, Springer 2007, pp. 26-37. MR 2406220
[6] Bělohlávek, R.: Granulation and granularity via conceptual structures: A perspective from the point of view of fuzzy concept lattices. In: Data mining, rough sets and granular computing, Springer, Berlin Heidelberg 2002, pp. 265-289. DOI 
[7] Birkhoff, G.: Lattice Theory. American Mathematical Society, Rhode Island 1940. MR 0001959 | Zbl 0537.06001
[8] Davey, B. A., Priestley, H. A.: Introduction to Lattices and Order. Cambridge University Press 2002. MR 1058437
[9] Baets, B. De, Mesiar, R.: Triangular norms on product lattices. Fuzzy Sets and Systems 104 (1999),1, 61-75. DOI  | MR 1685810
[10] Baets, B. De, Mesiar, R.: Discrete Triangular Norms. In:Topological and Algebraic Structures in Fuzzy Sets, Springer 2003, pp. 389-400. DOI  | MR 2046749
[11] Hájek, P.: Metamathematics of Fuzzy Logic. Volume 4, Springer Science and Business Media, 2013. MR 1900263 | Zbl 1007.03022
[12] Klement, E P., Mesiar, R., Pap, E.: Triangular Norms. Volume 8, Springer Science and Business Media, 2013. MR 1790096 | Zbl 1087.20041
[13] Lee, C. C.: Fuzzy logic in control systems: fuzzy logic controller. IEEE Trans. Systems Man Cybernet. 20 (1990), 2, 404-418. DOI  | MR 1053340
[14] Mayor, G., Suñer, J., Torrens, J.: Operations on Finite Settings: from Triangular Norms to Copulas. In: Copulas and Dependence Models with Applications, Springer 2017, pp. 157-170. DOI  | MR 3822202
[15] Nguyen, H. T., Walker, E. A.: A first Course in Fuzzy Logic. Chapman and Hall/CRC Press 2006. MR 2180829
[16] Pierce, B. C., Garey, M. R., Meyer, A.: Basic Category Theory for Computer Scientists. MIT Press 1991. MR 1120026
[17] Togai, M., Watanabe, H.: Expert system on a chip: An engine for real-time approximate reasoning. In: Proc. ACM SIGART international symposium on Methodologies for intelligent systems, ACM 1986, pp. 147-154.
[18] Yousefi, A., Mashinchi, M.: Categories of fuzzy implications and R-implications on bounded lattices. In: 6th Iranian Joint Congress on Fuzzy and Intelligent Systems (CFIS), IEEE 2018, pp. 40-42. DOI 
[19] Yousefi, A., Mashinchi, M.: Counting T-norms and R-implications on Bounded Lattices. In: 9th National Conference on Mathematics of Payame Noor University, On CD 2019, pp. 726-731.
[20] Yu, Y., Mordeson, J. N., Cheng, S. C.: Elements of L-algebra. Lecture Notes in Fuzzy Mathematics and Computer Science, Creighton University, Omaha 1994. MR 1322858
[21] Zadeh, L. A.: A computational approach to fuzzy quantifiers in natural languages. Computers Math. Appl. 9, Elsevier (1983), 149-184. DOI  | MR 0719073 | Zbl 0517.94028
Partner of
EuDML logo