[1] Boda, K., Filar, J. A., Lin, Y. L.:
Stochastic target hitting time and the problem of early retirement. IEEE Trans. Automat. Control 49 (2004), 409-419.
DOI |
MR 2062253
[2] Bouakiz, M., Kebir, Y.:
Target-level criterion in Markov decision process. J. Optim. Theory Appl. 86 (1995), 1-15.
DOI |
MR 1341504
[3] Bertsekas, D., Shreve, S.:
Stochastic Optimal Control: The Discrete-Time Case. Academic Press Inc, New York 1978
MR 0511544
[4] Bauerle, N., Rieder, U.:
Markov Decision Processes with Applications to Finance. Springer, Heidelberg 2011
MR 2808878
[5] Feinberg, E.:
Continuous time discounted jump Markov decision processes: a discrete-event approach. Math. Operat. Res. 29 (2004), 492-524.
DOI |
MR 2082616
[6] Guo, X. P., Hernández-Lerma, O.:
Continuous-Time Markov Decision Process: Theorey and Applications. Springer-Verlag, Berlin 2009.
MR 2554588
[7] Guo, X. P., Piunovskiy, A.:
Discounted continuous-time Markov decision processes with constraints: unbounded transition and loss rates. Math. Oper. Res. 36 (2011), 105-132.
DOI |
MR 2799395
[8] Guo, X. P., Huang, X. X., Huang, Y. H.:
Finite-horizon optimality for continuous-time Markov decision processs with unbounded transition rates. Adv. Appl. Prob. 47 (2015), 1064-1087.
DOI |
MR 3433296
[9] Hernández-Lerma, O., Lasserre, J. B.:
Discrete-Time Markov Control Process: Basic Optimality Criteria. Springer-Verlag, New York 1996.
MR 1363487
[10] Huang, Y. H., Guo, X. P.:
Optimal risk probability for first passage models in Semi-Markov processes. J. Math. Anal. Appl. 359 (2009), 404-420.
DOI |
MR 2542184
[11] Huang, Y. H., Guo, X. P.:
First passage models for denumberable Semi-Markov processes with nonnegative discounted cost. Acta. Math. Appl. Sinica 27 (2011), 177-190.
DOI |
MR 2784052
[12] Huang, Y. H., Guo, X. P., Li, Z. F.:
Minimum risk probability for finite horizon semi-Markov decision process. J. Math. Anal. Appl. 402 (2013), 378-391.
DOI |
MR 3023265
[13] Huang, X. X., Zou, X. L., Guo, X. P.:
A minimization problem of the risk probability in first passage semi-Markov decision processes with loss rates. Sci. China Math. 58 (2015), 1923-1938.
DOI |
MR 3383991
[14] Huo, H. F., Zou, X. L., Guo, X. P.:
The risk probability criterion for discounted continuous-time Markov decision processes. Discrete Event Dynamic system: Theory Appl. 27 (2017), 675-699.
DOI |
MR 3712415
[15] Huo, H. F., Wen, X.:
First passage risk probability optimality for continuous time Markov decision processes. Kybernetika 55 (2019), 114-133.
DOI |
MR 3935417
[16] Huo, H. F., Guo, X.P.:
Risk probability minimization problems for continuous time Markov decision processes on finite horizon. IEEE trans. Automat. Control 65 (2020), 3199-3206.
DOI |
MR 4120586
[17] Jacod, J.:
Multivariate point processes: Predictable projection, Radon-Nicodym derivatives, representation of martingales. Z. Wahrscheinlichkeitstheorie und verwandte Gebiete 31 (1975), 235-253.
DOI |
MR 0380978
[18] Janssen, J., Manca, R.:
Semi-Markov Risk Models For Finance, Insurance, and Reliability. Springer-Verlag, New York 2006.
MR 2301626
[19] Liu, Q. L., Zou, X. L.:
A risk minimization problem for finite horizon semi-Markov decision processes with loss rates. J. Dynamics Games 5 (2018), 143-163.
DOI |
MR 3810203
[20] Piunovskiy, A., Zhang, Y.:
Discounted continuous-time Markov decision processes with unbounded rates: the convex analytic approach. SIAM J. Control Optim. 49 (2011), 2032-2061.
DOI |
MR 2837510
[21] Ohtsubo, Y., Toyonaga, K.:
Optimal policy for minimizing risk models in Markov decision processes. J. Math. Anal. Appl. 271 (2002), 66-81.
DOI |
MR 1923747
[22] Ohtsubo, Y.:
Risk minimization in optimal stopping problem and applications. J. Oper. Res. Soc. Japan 46 (2003), 342-352.
DOI |
MR 2011960
[23] Ohtsubo, Y., Toyonaga, K.:
Equivalence classes for optimizing risk models in Markov decision processes. Math. Methods Oper. Res. 60 (2004), 239-250.
DOI |
MR 2099534
[24] Puterman, M. L.:
Markov Decision Processes: Discrete Stochastic Dynamic Programming. John Wiley, New York 1994.
MR 1270015 |
Zbl 1184.90170
[25] Sakaguchi, M., Ohtsubo, Y.:
Optimal threshold probability and expectation in semi-Markov decision processes. Appl. Math. Comput. 216 (2010), 2947-2958.
DOI |
MR 2653110
[27] Wei, Q. D., Guo, X. P.:
Constrained semi-Markov decision processes with ratio and time expected average criteria in Polish spaces. Optimization 64 (2015), 1593-1623.
DOI |
MR 3340650
[28] White, D. J.:
Minimizing a threshold probability in discounted Markov decision processes. J. Math. Anal. Appl. Optim. 173 (1993), 634-646.
DOI |
MR 1209345
[29] Wu, C. B., Lin, Y. L.:
Minimizing risk models in Markov decision processes with policies depending on target values. J. Math. Anal. Appl. 231 (1999), 47-67.
DOI |
MR 1676741
[30] Wu, R., Fang, K.:
A risk model with delay in claim settlement. Acta Math. Applic. Sinica 15 (1999), 352-360.
DOI |
MR 1735505
[31] Yu, S. X., Lin, Y. L., Yan, P. F.:
Optimization models for the first arrival target distribution function in discrete time. J. Math. Anal. Appl. 225 (1998), 193-223.
DOI |
MR 1639236
[32] Xia, L.:
Optimization of Markov decision processes under the variance criterion. Automatica 73 (2016), 269-278.
DOI |
MR 3552085