[1] Bregman, L. M.:
The relaxation method of finding the common point of convex sets and its application to the solution of problems in convex programming. USSR Computational Mathematics and Mathematical Physics 7 (1967), 200-217.
DOI |
MR 0215617
[2] Chen, G., Zeng, X., Hong, Y.:
Distributed optimisation design for solving the Stein equation with constraints. IET Control Theory Appl. 13 (2019), 2492-2499.
DOI
[3] Cheng, S., Liang, S.:
Distributed optimization for multi-agent system over unbalanced graphs with linear convergence rate. Kybernetika 56 (2020), 559-577.
DOI |
MR 4131743
[4] Deng, W., Zeng, X., Hong, Y.:
Distributed computation for solving the Sylvester equation based on optimization. IEEE Control Systems Lett. 4 (2019), 414-419.
DOI |
MR 4211320
[5] Gholami, M. R., Jansson, M., al., E. G. Ström et:
Diffusion estimation over cooperative multi-agent networks with missing data. IEEE Trans. Signal Inform. Process. over Networks 2 (2016), 27-289.
DOI |
MR 3571397
[6] Lan, G., Lee, S., Zhou, Y.:
Communication-efficient algorithms for decentralized and stochastic optimization. Math. Programm. 180 (2020), 237-284.
DOI |
MR 4062837
[7] Lei, J., Shanbhag, U. V., al., J. S. Pang et:
On synchronous, asynchronous, and randomized best-response schemes for stochastic Nash games. Math. Oper. Res. 45 (2020), 157-190.
DOI |
MR 4066993
[8] Liu, J., Morse, A. S., Nedic, A., a., et:
Exponential convergence of a distributed algorithm for solving linear algebraic equations. Automatica 83 (2017), 37-46.
DOI |
MR 3680412
[9] Mou, S., Liu, J., Morse, A. S.:
A distributed algorithm for solving a linear algebraic equation. IEEE Trans. Automat. Control 60 (2015), 2863-2878.
DOI |
MR 3419577
[10] Ram, S. S., Nedic, A., Veeravalli, V. V.:
Distributed stochastic subgradient projection algorithms for convex optimization. J. Optim. Theory Appl. 147 (2010), 516-545.
DOI |
MR 2733992
[11] Shi, G., Anderson, B. D. O., Helmke, U.:
Network flows that solve linear equations. IEEE Trans. Automat. Control 62 (2016), 2659-2674.
DOI |
MR 3660554
[12] Wang, Y., Lin, P., Hong, Y.:
Distributed regression estimation with incomplete data in multi-agent networks. Science China Inform. Sci. 61 (2018), 092202.
DOI 10.1007/s11432-016-9173-8 |
MR 3742944
[13] Wang, Y., Lin, P., Qin, H.:
Distributed classification learning based on nonlinear vector support machines for switching networks. Kybernetika 53 (2017), 595-611.
DOI |
MR 3730254
[14] Wang, Y., Zhao, W., al., Y. Hong et:
Distributed subgradient-free stochastic optimization algorithm for nonsmooth convex functions over time-varying networks. SIAM J. Control Optim. 57 (2019), 2821-2842.
DOI |
MR 3995027
[15] Yuan, D., Hong, Y., al., D. W. C. Ho et:
Optimal distributed stochastic mirror descent for strongly convex optimization. Automatica 90(2018), 196-203.
DOI |
MR 3764399
[16] Yuan, D., Hong, Y., al., D. W. C. Ho et:
Distributed mirror descent for online composite optimization. IEEE Trans. Automat. Control (2020).
MR 4210454
[17] Zeng, X., Liang, S., al., Y. Hong et:
Distributed computation of linear matrix equations: An optimization perspective. IEEE Trans. Automat. Control 64 (2018), 1858-1873.
DOI |
MR 3951032