Previous |  Up |  Next

Article

Keywords:
soft Variable Structure Control; nonlinear control; time-delay systems; delay compensation
Summary:
In order to achieve a short regulation cycle, time-optimal control has been considered in the past. However, the sensitivity to errors and uncertainties, and implementation difficulties in the practical systems, have incited other research directions to meet this objective. In this paper, soft Variable Structure Control (VSC) is analyzed from the perspective of linear time-delay systems with input constraint. The desired fast convergence under a smoothly varying control signal is obtained. The stability issues originating from the non-negligible delay are addressed explicitly by incorporating a dead-time compensator, applicable to both structurally stable and unstable plants. The properties of the obtained dynamic soft VSC system are demonstrated analytically and compared with the linear and saturating control structures.
References:
[1] Abbasi, W., Rehman, F. ur, Shah, I.: Smooth super twisting sliding mode based steering control for nonholonomic systems transformable into chained form. Kybernetika 54 (2018), 476-495. DOI  | MR 3844828
[2] Adamy, J., Flemming, A.: Soft variable-structure controls: a survey. Automatica 40 (2004), 1821-1844. DOI  | MR 2155993
[3] Agrachev, A. A., Biolo, C.: Switching in time-optimal problem: the 3D case with 2D control. J. Dyn. Control Syst. 23 (2017), 577-595. DOI  | MR 3657278
[4] Asadinia, M. S., Binazadeh, T.: Robust soft variable structure control of perturbed singular systems with constrained input. Control Cybernet. 46 (2017), 345-360. MR 3839925
[5] Chukwu, E. N.: Stability and Time-Optimal Control of Hereditary Systems. Academic Press, Inc., San Diego 2001. MR 1162308
[6] Cucuzzella, M., Ferrara, A.: Practical second order sliding modes in single-loop networked control of nonlinear systems. Automatica 89 (2018), 235-240. DOI 10.1016/j.automatica.2017.11.034 | MR 3762051
[7] Gutman, P.-O., Hagander, P.: A new design of constrained controllers for linear systems. IEEE Trans. Automat. Control AC-30 (1985), 22-33. DOI  | MR 0777074
[8] Hu, J.-B., Wei, H., Feng, Y.-F., Yang, X.-B.: Synchronization of fractional chaotic complex networks with delays. Kybernetika 55 (2019), 203-215. DOI  | MR 3935422
[9] Idrees, M., Muhammad, S., Ullah, S.: Robust hierarchical sliding mode control with state-dependent switching gain for stabilization of rotary inverted pendulum. Kybernetika 55 (2019), 455-471. DOI  | MR 4015993
[10] Ignaciuk, P.: Dead-time compensation in continuous-review perishable inventory systems with multiple supply alternatives. J. Proc. Control 22 (2012), 915-924. DOI 
[11] Ignaciuk, P.: Nonlinear inventory control with discrete sliding modes in systems with uncertain delay. IEEE Tran. Ind. Inform. 10 (2014), 559-568. DOI 
[12] Ignaciuk, P., Bartoszewicz, A.: Flow control in connection-oriented networks - a time-varying sampling period system case study. Kybernetika 44 (2008), 336-359. DOI  | MR 2436036
[13] Ignaciuk, P., Karbowańczyk, M.: Active queue management with discrete sliding modes in TCP networks. Bull. Pol. Acad. Sci.-Te. 62 (2014), 701-711.
[14] Ignaciuk, P., Morawski, M.: Quasi-soft variable structure control of discrete-time systems with input saturation. IEEE Trans. Control Syst. Techn. 27 (2019), 1244-1249. DOI 
[15] Ignaciuk, P., Wieczorek, \L.: Networked base-stock inventory control in complex distribution systems. Math. Probl. Eng. 2019 (2019), 1-14. DOI  | MR 4032830
[16] Jasniewicz, B., Adamy, J.: Fast robust control of linear systems subject to actuator saturation. In: Proc. IFAC World Congr., Seoul 2008, pp- 15179-15184.
[17] Kamal, S., Bandyopadhyay, B.: High performance regulator for fractional order systems: A soft variable structure control approach. Asian J. Control 17 (2015), 1342-1346. DOI  | MR 3373093
[18] Kankashvar, M. R., Hashemzadeh, F., Baradarannia, M., Ghiasi, A. R.: State feedback time-optimal controller for linear systems with input delay. In: 2nd Int. Conf. Know. Eng. Innovat., Teheran 2015, pp. 582-588.
[19] Kefferpütz, K., Fischer, B., Adamy, J.: A nonlinear controller for input amplitude and rate constrained linear systems. IEEE Trans. Automat. Control 58 (2013), 2693-2697. DOI  | MR 3106081
[20] Krstic, M., Bekiaris-Liberis, N.: Compensation of infinite-dimensional input dynamics. Ann. Rev. Control 34 (2010). 233-244. DOI 
[21] Lee, H., Utkin, V. I.: Chattering suppression methods in sliding mode control systems. Ann. Rev. Control 31 (2007), 179-188. DOI  | MR 2455618
[22] Lens, H., Adamy, J., Domont-Yankulova, D.: A fast nonlinear control method for linear systems with input saturation. Automatica 47 (2011), 857-860. DOI  | MR 2878350
[23] Liu, Y., Gao, C., Meng, B., Cong, X.: Dynamic soft variable structure control for singular systems. In: Proc. 30th Chinese Control Conf., Yantai 2011, pp. 2572-2577.
[24] Liu, S., Jiang, Y., Liu, P.: Rejection of nonharmonic disturbances in nonlinear systems. Kybernetika 46 (2010), 785-798. MR 2778927
[25] Liu, Y., Kao, Y., Gu, S., Karimi, H. R.: Soft variable structure controller design for singular systems. J. Franklin Inst. 352 (2015), 1613-1626. DOI  | MR 3325508
[26] Liu, J., Wang, X.: Advanced Sliding Mode Control for Mechanical Systems. Design, Analysis and MATLAB Simulation. Springer-Verlag, Berlin - Heidelberg 2012.
[27] McEneaney, W. M., Pandey, A.: An idempotent algorithm for a class of network-disruption games. Kybernetika 52 (2016), 666-695. DOI  | MR 3602010
[28] Mondié, S., Michiels, W.: Finite spectrum assignment of unstable time-delay systems with a safe implementation. IEEE Trans. Automat. Control 48 (2003), 2207-2212. DOI  | MR 2027246
[29] Morawski, M., Ignaciuk, P.: Reducing impact of network induced perturbations in remote control systems. Control Eng. Prac. 55 (2016), 127-138. DOI 
[30] Morawski, M., Ignaciuk, P.: Energy-efficient scheduler for MPTCP data transfer with independent and coupled channels. Comput. Commun. 132 (2018), 56-64. DOI 
[31] Naim, M. M., Spiegler, V. I., Wikner, J., Towill, D. R.: Identifying the causes of the bullwhip effect by exploiting control block diagram manipulation with analogical reasoning. Eur. J. Oper. Res. 263 (2017), 240-246. DOI 10.1016/j.ejor.2017.05.014
[32] Neusser, Z., Valasek, M.: Control of the underactuated mechanical systems using natural motion. Kybernetika 48 (2012), 223-241. MR 2954322
[33] Normey-Rico, J. E., Camacho, E. F.: Dead-time compensators: a survey. Control Eng. Prac. 16 (2008), 407-428. DOI 
[34] Peng, Ch., Yue, D., Han, Q.-L.: Communication and Control for Networked Complex Systems. Springer-Verlag, Berlin - Heidelberg 2015. MR 3328677
[35] Petre, E., Tebbani, S., Selisteanu, D.: Robust-adaptive control strategies for a time delay bioelectrochemical process using interval observers. Asian J. Control. 17 (2015), 1767-1778. DOI  | MR 3397752
[36] Richard, J., Gouaisbaut, F., Perruquetti, W.: Sliding mode control in the presence of delay. Kybernetika 37 (2001), 277-294. MR 1859086
[37] Slotine, J.-J., Li, W.: Applied Nonlinear Control. Prentice Hall, Englewood Cliffs 1991. Zbl 0753.93036
[38] Suarez, O. J., Vega, C. J., Elvira-Ceja, S., Sanchez, E. N., Rodriguez, D. I.: Sliding-mode pinning control of complex networks. Kybernetika 54 (2018), 1011-1032. DOI  | MR 3893133
[39] Sun, P., Zhang, L., Zhang, K.: Reconstructibility of boolean control networks with time delays in states. Kybernetika 54 (2018), 1091-1104. DOI  | MR 3893137
[40] Utkin, V. I.: Variable structure systems with sliding modes. IEEE Trans. Autom. Control 22 (1977), 212-222. DOI  | MR 0484664
[41] Xu, R., Liu, Y., Gao, C., Wang, S.: Soft variable structure control with differential equation for generalized systems. In: Proc. 26th Chinese Control Dec. Conf., Changsha 2014, pp. 530-535. MR 2228135
[42] Yang, X., Yan, J., Hua, Ch., Guan, X.: Effects of quantization and saturation on performance in bilateral teleoperator. Int. J. Robust Nonlin. 30 (2020), 121-141. DOI  | MR 4049003
[43] Yang, K.-Y., Zhang, L.-L., Zhang, J.: Stability analysis of a three-dimensional energy demand-supply system under delayed feedback control. Kybernetika 51 (2015), 1084-1100. MR 3453687
[44] Zhang, D., Shen, Y., Xia, X.: Globally uniformly ultimately bounded observer design for a class of nonlinear systems with sampled and delayed measurements. Kybernetika 52 (2016), 441-460. DOI  | MR 3532516
[45] Zhong, Q.-Ch.: Robust Control of Time-Delay Systems. Springer-Verlag, London 2006. MR 1761689
Partner of
EuDML logo