Previous |  Up |  Next

Article

Keywords:
nonholonomic mobile robot systems; fixed-time control; trajectory tracking
Summary:
This paper investigates the fixed-time trajectory tracking control problem for a nonholonomic mobile robot. Firstly, the tracking error system is derived for the mobile robot by the aid of a global invertible transformation. Then, based on the unified error dynamics and by using the fixed-time control method, continuous fixed-time tracking controllers are developed for the mobile robot such that the robot can track the desired trajectory in a fixed time. Moreover, the settling time is independent of the system initial conditions and only determined by the controller parameters. Finally, numerical simulations are provided to demonstrate the effectiveness of the theoretical results.
References:
[1] Antonelli, G., Chiaverini, S., Fusco, G.: A fuzzy logic based approach for mobile robot path tracking. IEEE Trans. Fuzzy Syst. 15 (2007), 211-221. DOI 
[2] Bhat, S., Bernstein, D.: Finite-time stability of continuous autonomous systems. SIAM J. Control Optim. 38 (2000), 751-766. DOI 10.1137/S0363012997321358 | MR 1756893 | Zbl 0945.34039
[3] Brockett, R.: Differential Geometric Control Theory. Birkhauser, Boston 1983, pp. 181-191.
[4] Campion, G., Bastin, G., D'Andrea-Novel, B: Structural properties and classification of kinematic and dynamic models of wheeled mobile robots. IEEE Trans. Rob. Autom. 12 (1996), 47-62. DOI 
[5] Chen, X., Li, C., Li, G., Luo, Y.: Dynamic model based motor control for wheeled mobile robots. Robot 30 (2008), 326-332. DOI 
[6] Du, H., He, Y., Cheng, Y.: Finite-time cooperative tracking control for a class of second-order nonlinear multi-agent systems. Kybernetika 49 (2013), 507-523. DOI  | MR 3117911 | Zbl 1274.93008
[7] Filipescu, A., Minzu, V., Dumitrascu, B., Filipescu, A., Minca, E.: Trajectory-tracking and discrete-time sliding-mode control of wheeled mobile robots. In: Proc. IEEE Int. Conf. Inform. Autom. Shenzhen 2011, pp. 27-32.
[8] Hardy, G., Littlewood, J., Polya, G.: Inequalities. Cambridge University Press, Cambridge 1952. MR 0046395 | Zbl 0634.26008
[9] Huang, W., Yang, Y., Hua, C.: Fixed-time tracking control approach design for nonholonomic mobile robot. In: Proc. 35th CCC, Chengdu 2016, pp. 3423-3428.
[10] Kanayama, Y., Kimura, Y., Miyazaki, F., Noguchi, T.: A stable tracking control method for an autonomous mobile robot. In: Proc. IEEE Int. Conf. Rob. Autom. Cincinnati1990, pp. 384-389.
[11] Klančar, G., Škrjanc, I.: Tracking-error model-based predictive control for mobile robots in real time. Robot. Auton. Syst. 55 (2007), 460-469. DOI 
[12] Lan, Q., Niu, H., Liu, Y., Xu, H.: Global output-feedback finite-time stabilization for a class of stochastic nonlinear cascaded systems. Kybernetika 53 (2017), 780-802. DOI  | MR 3750103
[13] Levant, A.: On fixed and finite time stability in sliding mode control. In: Proc. 52nd IEEE CDC, Florence 2013, pp. 4260-4265. MR 3050726
[14] Li, S., Tian, Y.: Finite time stability of cascaded time-varying systems. Int. J. Control 80 (2007), 646-657. DOI 10.1080/00207170601148291 | MR 2304124
[15] Li, J., Yang, Y., Hua, C., Guan, X.: Fixed-time backstepping control design for high-order strict-feedback nonlinear systems via terminal sliding mode. IET Control Theory A. 11 (2016), 1184-1193. DOI  | MR 3700336
[16] Li, H., Zhu, M., Chu, Z., Du, H., Wen, G., Alotaibi, N.: Fixed-time synchronization of a class of second-order nonlinear leader-following multi-agent systems. Asian J. Control 20 (2018), 39-48. DOI  | MR 3756801
[17] Mendoza, M., Bonilla, I., Reyes, F., Gonzalezgalvan, E.: A Lyapunov-based design tool of impedance controllers for robot manipulators. Kybernetika 48 (2012), 1136-1155. MR 3052878
[18] Ou, M., Gu, S., Wang, X., Dong, K.: Finite-time tracking control of multiple nonholonomic mobile robots with external disturbances. Kybernetika 51 (2015), 1049-1067. DOI  | MR 3453685
[19] Ou, M., Li, S., Wang, C.: Finite-time tracking control for nonholonomic mobile robots based on visual servoing. Asian J. Control 16 (2014), 679-691. DOI  | MR 3216258
[20] Ou, M., Sun, H., Li, S.: Finite time tracking control of a nonholonomic mobile robot with external disturbances. In: Proc. 31th CCC, Hefei 2012, pp. 853-858. MR 3013579 | Zbl 1265.68291
[21] Polyakov, A.: Nonlinear feedback design for fixed-time stabilization of linear control systems. IEEE Trans. Automat. Control 57 (2012), 2106-2110. DOI  | MR 2957184
[22] Qian, C., Lin, W.: A continuous feedback approach to global strong stabilization of nonlinear systems. IEEE Trans. Automat. Control 46 (2001), 1061-1079. DOI  | MR 1842139 | Zbl 1012.93053
[23] Sun, H., Hou, L., Zong, G., Yu, X.: Fixed-time attitude tracking control for spacecraft with input quantization. IEEE Trans. Aero. Elec. Syst. 55 (2019), 124-134. DOI 10.1109/TAES.2018.2849158
[24] Teng, T., Yang, C., He, W., Na, J., Li, Z.: Transient tracking performance guaranteed neural control of robotic manipulators with finite-time learning convergence. In: Proc. 24th ICONIP, Guangzhou 2017, pp. 365-375.
[25] Tian, B., Lu, H., Zuo, Z., Yang, W.: Fixed-time leader-follower output feedback consensus for second-order multiagent systems. IEEE Trans. Cybernetics 49 (2019), 1545-1550. DOI  | MR 3871136
[26] Wang, X., Zong, G., Sun, H.: Asynchronous finite-time dynamic output feedback control for switched time-delay systems with non-linear disturbances. IET Control Theory A. 10 (2016), 1142-1150. DOI  | MR 3524845
[27] Wu, Y., Wang, B., Zong, G.: Finite time tracking controller design for nonholonomic systems with extended chained form. IEEE Trans. Circuits Syst. II: Express Briefs 52 (2005), 798-802. DOI 10.1109/TCSII.2005.852528
[28] Ye, J.: Tracking control for nonholonomic mobile robots: integrating the analog neural network into the backstepping technique. Neurocomputing 71 (2008), 3373-3378. DOI 
[29] Zhang, Z., Wu, Y.: Fixed-time regulation control of uncertain nonholonomic systems and its applications. Int. J. Control 90 (2017), 1327-1344. DOI  | MR 3652582
[30] Zuo, Z.: Non-singular fixed-time terminal sliding mode control of non-linear systems. IET Control Theory A. 9 (2015), 545-552. DOI  | MR 3328478
[31] Zuo, Z., Tie, L.: A new class of finite-time nonlinear consensus protocols for multi-agent systems. Int. J. Control 87 (2014), 363-370. DOI  | MR 3172512
Partner of
EuDML logo