[1] Chilali, M., Gahinet, P:
$\mathcal{H_{\infty}}$ design with pole placement constraints: An {LMI} approach. IEEE Trans. Automat. Control 41 (1996), 358-367.
DOI |
MR 1382985
[2] Desoer, C. A.:
Decoupling linear multiinput multioutput plants by dynamic output feedback: An algebraic theory. IEEE Trans. Automat. Control 31 (1986), 744-750.
DOI |
MR 0848673
[3] Doyle, J. C., Glover, K., Khargonekar, P., Francis, B. A.:
State-space solutions to standard $\mathcal{H}_{2}$ and $\mathcal{H}_{\infty}$ control problems. IEEE Trans. Automat. Control 34 (1989), 831-847.
DOI |
MR 1004301
[4] Folly, K. A.: A Comparison of Two Methods for Preventing Pole-zero Cancellation in ${H}_{\infty}$ Power System Controller Design. IEEE Lausanne Power Tech (2007).
[5] Flores, M. A., Galindo, R.: Robust control for outputs of interest different from the measured outputs, based on the parameterization of stabilizing controllers. Control robusto para salidas de interés diferentes a las medidas, basado en la parametrización de controladores estabilizantes. In: {XVI} Latinamerican Congress of Automatic Control, {CLCA} 2014.
[6] Gahinet, P., Apkarian, P.:
A linear matrix inequality approach to ${H}_{\infty}$ control. Int. J. Robust Nonlinear Control 4 (1994), 421-448.
DOI |
MR 1286148
[7] Galindo, R.:
Parameterization of all stable controllers stabilizing full state information systems and mixed sensitivity. In: Proc. The Institution of Mechanical Engineers Part {I}: J. Systems Control Engrg. 223 (2009), 957-971.
DOI
[8] Galindo, R.:
Input/output decoupling of square linear systems by dynamic two-parameter stabilizing control. Asian J. Control 18 (2016), 2310-2316.
DOI |
MR 3580390
[9] Galindo, R., Conejo, C. D.: A Parametrization of all one parameter stabilizing controllers and a mixed sensitivity problem, for square systems. In: International Conference on Electrical Engineering, Computing Science and Automatic Control (012, pp. 1-6.
[10] Galindo, R., Malabre, M., Kučera, V.: Mixed sensitivity $\mathcal{H}_{\infty}$ control for {LTI} systems. IEEE Conf. Decision Control 2 (2004), 1331-1336.
[11] Gao, W., Zhang, N., Du, H.: A half-car model for dynamic analysis of vehicles with random parameters. In: Australasian Congress on Applied Mechanics (2007).
[12] Glover, K., McFarlane, D.:
Robust stabilization of normalized coprime factor plant descriptions with $\mathcal{H}_{\infty}$-bounded uncertainty. IEEE Trans. Automat. Control 34 (1989), 821-830.
DOI 10.1109/9.29424 |
MR 1004300
[13] Henrion, D., Šebek, M., Kučera, V.:
Robust Pole Placement for Second-Order Systems: An LMI Approach. Kybernetika 41 (2005), 1-14.
MR 2130481
[14] Le, X., Wang, J.:
Robust Pole Assignment for Synthesizing Feedback Control Systems Using Recurrent Neural Networks. IEEE Trans. Neural Networks Learning Systems 25 (2014), 383-393.
DOI 10.1109/TNNLS.2013.2275732
[15] McFarlane, D., Glover, K.:
A loop-shaping design procedure using $\mathcal{H}_{\infty}$ synthesis. IEEE Trans. Automat. Control 37 (1992), 759-769.
DOI |
MR 1164547
[16] Nett, C. N., Jacobson, C., Balas, M. J.:
A connection between state-space and doubly coprime fractional representations. IEEE Trans. Automat. Control 29 (1984), 831-832.
DOI |
MR 0756933
[17] Sarjaš, A., Chowdhury, A., Svečko, R.: Robust Optimal Regional Closed-loop Pole Assignment over Positivity Conditions and Differential Evolution. IFAC CESCIT 48 (2015), 141-146.
[18] Tsai, M. C., Geddes, E. J. M., Postlethwaite, I.:
Pole-zero cancellations and closed-loop properties of an ${H}_{\infty}$ mixed sensitivity design problem. Automatica 28 (1992), 519-530.
DOI |
MR 1166025
[19] Vidyasagar, M.:
Control System Synthesis: A Factorization Approach. M.I.T. Press, 1985.
MR 0787045
[20] Zhou, K., Doyle, J. C., Glover, K.:
Robust and Optimal Control. Prentice Hall, 1995.
Zbl 0999.49500