[1] Adams, C. R., Clarkson, J. A.:
Properties of functions $f(x,y)$ of bounded variation. Trans. Am. Math. Soc. 36 (1934), 711-730 correction ibid. 46 page 468 1939.
DOI 10.2307/1989819 |
MR 1501762 |
Zbl 0010.19902
[7] Ghodadra, B. L.:
Order of magnitude of multiple Walsh-Fourier coefficients of functions of bounded $p$-variation. Int. J. Pure Appl. Math. 82 (2013), 399-408.
MR 3100396 |
Zbl 1275.42044
[8] Ghodadra, B. L.:
An application of Jensen's inequality in determining the order of magnitude of multiple Fourier coefficients of functions of bounded $\phi$-variation. Math. Inequal. Appl. 17 (2014), 707-718.
DOI 10.7153/mia-17-52 |
MR 3235041 |
Zbl 1290.42022
[11] Ghodadra, B. L., Patadia, J. R.:
A note on the magnitude of Walsh Fourier coefficients. JIPAM, J. Inequal. Pure Appl. Math. 9 (2008), Article No. 44, 7 pages.
MR 2417326 |
Zbl 1160.42012
[12] Hardy, G. H.: On double Fourier series, and especially those which represent the double zeta-function with real and incommensurable parameters. Quart. J. 37 (1905), 53-79 \99999JFM99999 36.0501.02.
[13] Hewitt, E., Ross, K. A.:
Abstract Harmonic Analysis. Vol. II: Structure and Analysis for Compact Groups. Analysis on Locally Compact Abelian Groups. Die Grundlehren der mathematischen Wissenschaften 152. Springer, New York (1970).
DOI 10.1007/978-3-662-26755-4 |
MR 0262773 |
Zbl 0213.40103
[14] Hobson, E. W.:
The Theory of Functions of a Real Variable and the Theory of Fourier's Series. Vol. I. University Press, Cambridge (1927),\99999JFM99999 53.0226.01.
MR 0092828
[15] Lebesgue, H.:
Sur la répresentation trigonométrique approchée des fonctions satisfaisant à une condition de Lipschitz. Bull. Soc. Math. Fr. 38 French (1910), 184-210 \99999JFM99999 41.0476.02.
DOI 10.24033/bsmf.859 |
MR 1504642
[18] Natanson, I. P.:
Theory of Functions of Real Variable. Frederick Ungar Publishing, New York (1955).
MR 0067952 |
Zbl 0064.29102
[20] Schipp, F., Wade, W. R., Simon, P.:
Walsh Series. An Introduction to dyadic Harmonic Analysis. With the Assistance of J. Pál. Adam Hilger, Bristol (1990).
MR 1117682 |
Zbl 0727.42017
[22] Zygmund, A.:
Trigonometric Series. Volumes I and II combined. With a foreword by Robert Fefferman. Cambridge Mathematical Library. Cambridge University Press, Cambridge (2002),\99999DOI99999 10.1017/CBO9781316036587 \newpage.
MR 1963498 |
Zbl 1084.42003